Enhancing Traffic Flow Forecasting with Deep-Learning and Noise Reduction Techniques

Traditional short-term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short-time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO-VMD) based on the optimization of the gray wolf search algorithm. It a...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinqiu Zhao, Le Yu, Shuhua Wang, Zhonghao Zhang
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2024/1928189
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional short-term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short-time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO-VMD) based on the optimization of the gray wolf search algorithm. It aims to decompose and reduce the noise of short-time traffic flows. Meanwhile, it reduces the intricacy of data sequences and enhances the regularity pattern. To address the insufficient utilization of spatiotemporal features, this paper presents an innovative deep-learning traffic prediction framework based on the stacking of multiple temporal trend-aware graph attention (TGA) layers and gated temporal convolution (GTC) layers, which are called trend-aware temporal graph neural network (TTGAN). TGA dynamically models the space-time relationships of traffic data, and GTC models the temporal characteristics of traffic data. The experimental findings demonstrate that the MAPE model, as presented, achieves a reduction of 9% and 2% compared to the AGCRN and GWNET models, respectively, in the domain of deep spatiotemporal graph modeling. Data decomposition and noise reduction are necessary to achieve accurate results. This model has superior performance in terms of mean absolute error (MAE), coefficient of determination (R2), and explained variance score (EVAR).
ISSN:1607-887X