A reinforcement learning strategy to automate and accelerate h/p-multigrid solvers

We explore a reinforcement learning strategy to automate and accelerate h/p-multigrid methods in high-order solvers. Multigrid methods are very efficient but require fine-tuning of numerical parameters, such as the number of smoothing sweeps per level and the correction fraction (i.e., proportion of...

Full description

Saved in:
Bibliographic Details
Main Authors: David Huergo, Laura Alonso, Saumitra Joshi, Adrian Juanicotena, Gonzalo Rubio, Esteban Ferrer
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Results in Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590123024012040
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore a reinforcement learning strategy to automate and accelerate h/p-multigrid methods in high-order solvers. Multigrid methods are very efficient but require fine-tuning of numerical parameters, such as the number of smoothing sweeps per level and the correction fraction (i.e., proportion of the corrected solution that is transferred from a coarser grid to a finer grid). The objective of this paper is to use a proximal policy optimization algorithm to automatically tune the multigrid parameters and, by doing so, improve stability and efficiency of the h/p-multigrid strategy.Our findings reveal that the proposed reinforcement learning h/p-multigrid approach significantly accelerates and improves the robustness of steady-state simulations for one-dimensional advection-diffusion and nonlinear Burgers' equations, when discretized using high-order h/p methods, on uniform and nonuniform grids.
ISSN:2590-1230