Hierarchical structure Fe@CNFs@Co/C elastic aerogels with intelligent electromagnetic wave absorption

Abstract Developing intelligent electromagnetic wave (EMW) absorption materials with real‐time response‐ability is of great significance in complex application environments. Herein, highly compressible Fe@CNFs@Co/C elastic aerogels were assembled through the electrospinning method, achieving EMW abs...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongwei Zhou, Ying Lin, Yongzhen Ma, Luyao Han, Zhixin Cai, Yan Cheng, Qibin Yuan, Wenhuan Huang, Haibo Yang, Renchao Che
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:InfoMat
Subjects:
Online Access:https://doi.org/10.1002/inf2.12630
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Developing intelligent electromagnetic wave (EMW) absorption materials with real‐time response‐ability is of great significance in complex application environments. Herein, highly compressible Fe@CNFs@Co/C elastic aerogels were assembled through the electrospinning method, achieving EMW absorption through pressure changes. By varying the pressure, the effective absorption bandwidth (EAB) of Fe@CNFs@Co/C elastic aerogels shows continuous changes from low frequency to high frequency. The EAB of Fe@CNFs@Co/C elastic aerogels is 14.4 GHz (3.36–17.76 GHz), which covers 90% of the range of S/C/X/Ku bands. The theoretical simulation indicates that the external pressure prompts a reduction in the spacing between the fiber layers in the aerogels and facilitates the formation of a 3D conductive network with enhanced attenuation ability of EMW. The uniform distribution of metal particles and appropriate layer spacing can effectively optimize the impedance matching to achieve the best EMW absorption performance. This work state clearly that the hierarchically assembled elastic aerogels composed of metal–organic frameworks (MOFs) derivatives and carbon fibers are ideal dynamic EMW absorption materials for intelligent EMW response.
ISSN:2567-3165