Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité

Through discourse attribution and modality mechanisms, newspeople can convey information without having to personally endorse what they are reporting. In some cases, they may even combine news from conflicting sources. We therefore provide a methodological framework aiming at detecting, locating and...

Full description

Saved in:
Bibliographic Details
Main Author: Marie Chagnoux
Format: Article
Language:English
Published: Cercle linguistique du Centre et de l'Ouest - CerLICO 2009-06-01
Series:Corela
Subjects:
Online Access:https://journals.openedition.org/corela/162
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846132279387095040
author Marie Chagnoux
author_facet Marie Chagnoux
author_sort Marie Chagnoux
collection DOAJ
description Through discourse attribution and modality mechanisms, newspeople can convey information without having to personally endorse what they are reporting. In some cases, they may even combine news from conflicting sources. We therefore provide a methodological framework aiming at detecting, locating and representing commitment as well as modality dynamics in texts, using discursive trees. In particular, the depth of a tree associated to a text illustrates the complexity of its reference frames. The purpose of this approach, more broadly, is to automatically exhibit contentious texts from any given corpus.
format Article
id doaj-art-c8d4d57001e14de38e3c8e5daeb77688
institution Kabale University
issn 1638-573X
language English
publishDate 2009-06-01
publisher Cercle linguistique du Centre et de l'Ouest - CerLICO
record_format Article
series Corela
spelling doaj-art-c8d4d57001e14de38e3c8e5daeb776882024-12-09T15:07:26ZengCercle linguistique du Centre et de l'Ouest - CerLICOCorela1638-573X2009-06-017110.4000/corela.162Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualitéMarie ChagnouxThrough discourse attribution and modality mechanisms, newspeople can convey information without having to personally endorse what they are reporting. In some cases, they may even combine news from conflicting sources. We therefore provide a methodological framework aiming at detecting, locating and representing commitment as well as modality dynamics in texts, using discursive trees. In particular, the depth of a tree associated to a text illustrates the complexity of its reference frames. The purpose of this approach, more broadly, is to automatically exhibit contentious texts from any given corpus.https://journals.openedition.org/corela/162discursive modelenonciationcommitmentattributiondiscursive trees
spellingShingle Marie Chagnoux
Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
Corela
discursive model
enonciation
commitment
attribution
discursive trees
title Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
title_full Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
title_fullStr Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
title_full_unstemmed Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
title_short Informer sans s’engager : modélisation de la dynamique énonciative dans les sujets d’actualité
title_sort informer sans s engager modelisation de la dynamique enonciative dans les sujets d actualite
topic discursive model
enonciation
commitment
attribution
discursive trees
url https://journals.openedition.org/corela/162
work_keys_str_mv AT mariechagnoux informersanssengagermodelisationdeladynamiqueenonciativedanslessujetsdactualite