New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments
<p>In this study, we investigate atmospheric new particle formation (NPF) across 65 d in the Bolivian central Andes at two locations: the mountaintop Chacaltaya station (CHC, 5.2 km above sea level) and an urban site in El Alto–La Paz (EAC), 19 km apart and at 1.1 km lower altitude. We classif...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-01-01
|
Series: | Aerosol Research |
Online Access: | https://ar.copernicus.org/articles/3/15/2025/ar-3-15-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841539458580611072 |
---|---|
author | D. Aliaga V. A. Sinclair R. Krejci R. Krejci M. Andrade M. Andrade P. Artaxo L. Blacutt R. Cai R. Cai S. Carbone Y. Gramlich L. Heikkinen L. Heikkinen L. Heikkinen D. Heslin-Rees D. Heslin-Rees W. Huang W. Huang V.-M. Kerminen A. M. Koenig A. M. Koenig M. Kulmala M. Kulmala M. Kulmala P. Laj P. Laj V. Mardoñez-Balderrama V. Mardoñez-Balderrama C. Mohr C. Mohr C. Mohr I. Moreno P. Paasonen W. Scholz K. Sellegri L. Ticona G. Uzu F. Velarde A. Wiedensohler D. Worsnop D. Worsnop C. Wu C. Wu C. Wu C. Xuemeng Q. Zha F. Bianchi |
author_facet | D. Aliaga V. A. Sinclair R. Krejci R. Krejci M. Andrade M. Andrade P. Artaxo L. Blacutt R. Cai R. Cai S. Carbone Y. Gramlich L. Heikkinen L. Heikkinen L. Heikkinen D. Heslin-Rees D. Heslin-Rees W. Huang W. Huang V.-M. Kerminen A. M. Koenig A. M. Koenig M. Kulmala M. Kulmala M. Kulmala P. Laj P. Laj V. Mardoñez-Balderrama V. Mardoñez-Balderrama C. Mohr C. Mohr C. Mohr I. Moreno P. Paasonen W. Scholz K. Sellegri L. Ticona G. Uzu F. Velarde A. Wiedensohler D. Worsnop D. Worsnop C. Wu C. Wu C. Wu C. Xuemeng Q. Zha F. Bianchi |
author_sort | D. Aliaga |
collection | DOAJ |
description | <p>In this study, we investigate atmospheric new particle formation (NPF) across 65 d in the Bolivian central Andes at two locations: the mountaintop Chacaltaya station (CHC, 5.2 km above sea level) and an urban site in El Alto–La Paz (EAC), 19 km apart and at 1.1 km lower altitude. We classified the days into four categories based on the intensity of NPF, determined by the daily maximum concentration of 4–7 nm particles: (1) high at both sites, (2) medium at both, (3) high at EAC but low at CHC, and (4) low at both. These categories were then named after their emergent and most prominent characteristics: (1) Intense-NPF, (2) Polluted, (3) Volcanic, and (4) Cloudy. This classification was premised on the assumption that similar NPF intensities imply similar atmospheric processes. Our findings show significant differences across the categories in terms of particle size and volume, sulfuric acid concentration, aerosol compositions, pollution levels, meteorological conditions, and air mass origins. Specifically, intense NPF events (1) increased Aitken mode particle concentrations (14–100 nm) significantly on 28 % of the days when air masses passed over the Altiplano. At CHC, larger Aitken mode particle concentrations (40–100 nm) increased from 1.1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> (background) to 6.2 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>, and this is very likely linked to the ongoing NPF process. High pollution levels from urban emissions on 24 % of the days (2) were found to interrupt particle growth at CHC and diminish nucleation at EAC. Meanwhile, on 14 % of the days, high concentrations of sulfate and large particle volumes (3) were observed, correlating with significant influences from air masses originating from the actively degassing Sabancaya volcano and a depletion of positive 2–4 nm ions at CHC but not at EAC. During these days, reduced NPF intensity was observed at CHC but not at EAC. Lastly, on 34 % of the days, overcast conditions (4) were associated with low formation rates and air masses originating from the lowlands east of the stations. In all cases, event initiation (<span class="inline-formula">∼</span> 09:00 LT) generally occurred about half an hour earlier at CHC than at EAC and was likely modulated by the daily solar cycle. CHC at dawn is in an air mass representative of the regional residual layer with minimal local surface influence due to the barren landscape. As the day progresses, upslope winds bring in air masses affected by surface emissions from lower altitudes, which may include anthropogenic or biogenic sources. This influence likely develops gradually, eventually creating the right conditions for an NPF event to start. At EAC, the start of NPF was linked to the rapid growth of the boundary layer, which favored the entrainment of air masses from above. The study highlights the role of NPF in modifying atmospheric particles and underscores the varying impacts of urban versus mountain top environments on particle formation processes in the Andean region.</p> |
format | Article |
id | doaj-art-c819b01a9a00491ba5f14bae92690bf6 |
institution | Kabale University |
issn | 2940-3391 |
language | English |
publishDate | 2025-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Aerosol Research |
spelling | doaj-art-c819b01a9a00491ba5f14bae92690bf62025-01-14T07:15:13ZengCopernicus PublicationsAerosol Research2940-33912025-01-013154410.5194/ar-3-15-2025New particle formation dynamics in the central Andes: contrasting urban and mountaintop environmentsD. Aliaga0V. A. Sinclair1R. Krejci2R. Krejci3M. Andrade4M. Andrade5P. Artaxo6L. Blacutt7R. Cai8R. Cai9S. Carbone10Y. Gramlich11L. Heikkinen12L. Heikkinen13L. Heikkinen14D. Heslin-Rees15D. Heslin-Rees16W. Huang17W. Huang18V.-M. Kerminen19A. M. Koenig20A. M. Koenig21M. Kulmala22M. Kulmala23M. Kulmala24P. Laj25P. Laj26V. Mardoñez-Balderrama27V. Mardoñez-Balderrama28C. Mohr29C. Mohr30C. Mohr31I. Moreno32P. Paasonen33W. Scholz34K. Sellegri35L. Ticona36G. Uzu37F. Velarde38A. Wiedensohler39D. Worsnop40D. Worsnop41C. Wu42C. Wu43C. Wu44C. Xuemeng45Q. Zha46F. Bianchi47Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandDepartment of Environmental Science, Stockholm University, 11418 Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, 11418 Stockholm, SwedenLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaDepartment of Atmospheric and Oceanic Sciences, University of Maryland, College Park, College Park, Maryland 20742, USAInstitute of Physics, University of São Paulo, São Paulo, 05508-900, BrazilLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200438 Shanghai, ChinaInstitute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia-MG, 38408-100, BrazilPSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, SwitzerlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandDepartment of Environmental Science, Stockholm University, 11418 Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, 11418 Stockholm, SwedenDepartment of Environmental Science, Stockholm University, 11418 Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, 11418 Stockholm, SwedenInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandPSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, SwitzerlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaInstitute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, GermanyInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaAerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100089, ChinaInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandInstitut des Géosciences de l'Environnement, IGE, UGA, CNRS, IRD, G-INP, 38000 Grenoble, FranceLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaInstitute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR-ISAC), 40129 Bologna, ItalyDepartment of Environmental Science, Stockholm University, 11418 Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, 11418 Stockholm, SwedenPSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, SwitzerlandLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandInstitute for ion and applied physics, University of Innsbruck, Innsbruck, AustriaLaboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000 Clermont-Ferrand, FranceLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaInstitut des Géosciences de l'Environnement, IGE, UGA, CNRS, IRD, G-INP, 38000 Grenoble, FranceLaboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, BoliviaDepartment of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, GermanyInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandAerodyne Research Inc., Billerica, Massachusetts 01821, USADepartment of Environmental Science, Stockholm University, 11418 Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, 11418 Stockholm, Swedennow at: Department of Chemistry and Molecular Biology, University of Gothenburg, 41296, Gothenburg, SwedenInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaInstitute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, Finland<p>In this study, we investigate atmospheric new particle formation (NPF) across 65 d in the Bolivian central Andes at two locations: the mountaintop Chacaltaya station (CHC, 5.2 km above sea level) and an urban site in El Alto–La Paz (EAC), 19 km apart and at 1.1 km lower altitude. We classified the days into four categories based on the intensity of NPF, determined by the daily maximum concentration of 4–7 nm particles: (1) high at both sites, (2) medium at both, (3) high at EAC but low at CHC, and (4) low at both. These categories were then named after their emergent and most prominent characteristics: (1) Intense-NPF, (2) Polluted, (3) Volcanic, and (4) Cloudy. This classification was premised on the assumption that similar NPF intensities imply similar atmospheric processes. Our findings show significant differences across the categories in terms of particle size and volume, sulfuric acid concentration, aerosol compositions, pollution levels, meteorological conditions, and air mass origins. Specifically, intense NPF events (1) increased Aitken mode particle concentrations (14–100 nm) significantly on 28 % of the days when air masses passed over the Altiplano. At CHC, larger Aitken mode particle concentrations (40–100 nm) increased from 1.1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> (background) to 6.2 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>, and this is very likely linked to the ongoing NPF process. High pollution levels from urban emissions on 24 % of the days (2) were found to interrupt particle growth at CHC and diminish nucleation at EAC. Meanwhile, on 14 % of the days, high concentrations of sulfate and large particle volumes (3) were observed, correlating with significant influences from air masses originating from the actively degassing Sabancaya volcano and a depletion of positive 2–4 nm ions at CHC but not at EAC. During these days, reduced NPF intensity was observed at CHC but not at EAC. Lastly, on 34 % of the days, overcast conditions (4) were associated with low formation rates and air masses originating from the lowlands east of the stations. In all cases, event initiation (<span class="inline-formula">∼</span> 09:00 LT) generally occurred about half an hour earlier at CHC than at EAC and was likely modulated by the daily solar cycle. CHC at dawn is in an air mass representative of the regional residual layer with minimal local surface influence due to the barren landscape. As the day progresses, upslope winds bring in air masses affected by surface emissions from lower altitudes, which may include anthropogenic or biogenic sources. This influence likely develops gradually, eventually creating the right conditions for an NPF event to start. At EAC, the start of NPF was linked to the rapid growth of the boundary layer, which favored the entrainment of air masses from above. The study highlights the role of NPF in modifying atmospheric particles and underscores the varying impacts of urban versus mountain top environments on particle formation processes in the Andean region.</p>https://ar.copernicus.org/articles/3/15/2025/ar-3-15-2025.pdf |
spellingShingle | D. Aliaga V. A. Sinclair R. Krejci R. Krejci M. Andrade M. Andrade P. Artaxo L. Blacutt R. Cai R. Cai S. Carbone Y. Gramlich L. Heikkinen L. Heikkinen L. Heikkinen D. Heslin-Rees D. Heslin-Rees W. Huang W. Huang V.-M. Kerminen A. M. Koenig A. M. Koenig M. Kulmala M. Kulmala M. Kulmala P. Laj P. Laj V. Mardoñez-Balderrama V. Mardoñez-Balderrama C. Mohr C. Mohr C. Mohr I. Moreno P. Paasonen W. Scholz K. Sellegri L. Ticona G. Uzu F. Velarde A. Wiedensohler D. Worsnop D. Worsnop C. Wu C. Wu C. Wu C. Xuemeng Q. Zha F. Bianchi New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments Aerosol Research |
title | New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments |
title_full | New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments |
title_fullStr | New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments |
title_full_unstemmed | New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments |
title_short | New particle formation dynamics in the central Andes: contrasting urban and mountaintop environments |
title_sort | new particle formation dynamics in the central andes contrasting urban and mountaintop environments |
url | https://ar.copernicus.org/articles/3/15/2025/ar-3-15-2025.pdf |
work_keys_str_mv | AT daliaga newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT vasinclair newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT rkrejci newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT rkrejci newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT mandrade newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT mandrade newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT partaxo newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT lblacutt newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT rcai newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT rcai newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT scarbone newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT ygramlich newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT lheikkinen newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT lheikkinen newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT lheikkinen newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT dheslinrees newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT dheslinrees newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT whuang newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT whuang newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT vmkerminen newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT amkoenig newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT amkoenig newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT mkulmala newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT mkulmala newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT mkulmala newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT plaj newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT plaj newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT vmardonezbalderrama newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT vmardonezbalderrama newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cmohr newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cmohr newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cmohr newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT imoreno newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT ppaasonen newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT wscholz newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT ksellegri newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT lticona newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT guzu newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT fvelarde newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT awiedensohler newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT dworsnop newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT dworsnop newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cwu newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cwu newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cwu newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT cxuemeng newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT qzha newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments AT fbianchi newparticleformationdynamicsinthecentralandescontrastingurbanandmountaintopenvironments |