Research on the Arrangement Scheme of Spirally Twisted Tape Inserts in a Grate Furnace

To eliminate the flow dead zone and homogenize the asymmetric flow field of a grate furnace, spirally twisted tape inserts (STTIs) with a pitch ratio of 1.5 were installed in the vertical flues of an SCL1000-13.5/450 grate boiler. The arrangement schemes found to be present inside the chosen 1000 t/...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Yang, Jingxian Kong, Xinji Chen, Zhijiang Jin, Jinyuan Qian
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/21/5292
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To eliminate the flow dead zone and homogenize the asymmetric flow field of a grate furnace, spirally twisted tape inserts (STTIs) with a pitch ratio of 1.5 were installed in the vertical flues of an SCL1000-13.5/450 grate boiler. The arrangement schemes found to be present inside the chosen 1000 t/d grate furnace, determined using the orthogonal experimental method, included separate installation in chamber II, separate placement in chamber III, and simultaneous arrangement in both chamber II and chamber III. The effects of row spacing <i>H</i>, column spacing <i>W</i>, and mounting angle <i>φ</i> were investigated by means of the practicable and feasible numerical simulation method. With a focus on the uniformity degree of the flue gas, the results showed that temperature distribution is directly correlated with the velocity field. When it comes to the uniformity of the flow field, the exclusive use of STTIs in chamber II was better than that in chamber III. Under the optimal combination scheme of STTIs in both chamber II and chamber III (scheme <i>N</i>3<sub>23</sub>), the exhaust gas temperature reached the minimum value and the uniformity index of temperature increased to the range of 0.994~0.997. The findings in this work could provide a reference for the optimization of the flow field in a grate furnace.
ISSN:1996-1073