A deep multiple instance learning framework improves microsatellite instability detection from tumor next generation sequencing
Abstract Microsatellite instability (MSI) is a critical phenotype of cancer genomes and an FDA-recognized biomarker that can guide treatment with immune checkpoint inhibitors. Previous work has demonstrated that next-generation sequencing data can be used to identify samples with MSI-high phenotype....
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-54970-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Microsatellite instability (MSI) is a critical phenotype of cancer genomes and an FDA-recognized biomarker that can guide treatment with immune checkpoint inhibitors. Previous work has demonstrated that next-generation sequencing data can be used to identify samples with MSI-high phenotype. However, low tumor purity, as frequently observed in routine clinical samples, poses a challenge to the sensitivity of existing algorithms. To overcome this critical issue, we developed MiMSI, an MSI classifier based on deep neural networks and trained using a dataset that included low tumor purity MSI cases in a multiple instance learning framework. On a challenging yet representative set of cases, MiMSI showed higher sensitivity (0.895) and auROC (0.971) than MSISensor (sensitivity: 0.67; auROC: 0.907), an open-source software previously validated for clinical use at our institution using MSK-IMPACT large panel targeted NGS data. In a separate, prospective cohort, MiMSI confirmed that it outperforms MSISensor in low purity cases (P = 8.244e-07). |
---|---|
ISSN: | 2041-1723 |