Damping Characteristics of Fe-Mn Alloy and Its Helical Spring
In order to change the undamped state of traditional helical spring, a helical spring with improved damping characteristics is developed by using Fe-Mn alloy. First, the optimal process parameters for Fe-Mn alloy material in manufacturing helical springs is investigated. Then, Fe-Mn alloy helical sp...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Editorial Office of Journal of Shanghai Jiao Tong University
2025-08-01
|
| Series: | Shanghai Jiaotong Daxue xuebao |
| Subjects: | |
| Online Access: | https://xuebao.sjtu.edu.cn/article/2025/1006-2467/1006-2467-59-8-1192.shtml |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In order to change the undamped state of traditional helical spring, a helical spring with improved damping characteristics is developed by using Fe-Mn alloy. First, the optimal process parameters for Fe-Mn alloy material in manufacturing helical springs is investigated. Then, Fe-Mn alloy helical springs are fabricated and treated with optimized parameters to achieve high damping properties. Finally, the damping properties of Fe-Mn alloy helical spring are studied through the functional principle and analytical model of the helical spring. The results show that the Fe-Mn alloy helical spring exhibits a significant energy dissipation effect compared with the 65Mn helical spring under identical external excitation conditions. Within a specific loading displacement range, the loss factor of Fe-Mn alloy helical spring increases exponentially with the increase of displacement, while its equivalent stiffness decreases linearly, exhibiting pronounced softening characteristics. Specifically, when the equivalent strain amplitude of Fe-Mn alloy helical spring is less than 0.3%, its energy dissipation can be predicted using its torsional strain energy, providing a theoretical basis for spring design. This study provides a new direction for the development and application of vibration isolation products. |
|---|---|
| ISSN: | 1006-2467 |