Research on hip joint stress distribution algorithms based on deep learning
Aiming at the problem of the stress distribution algorithm of hip cartilage,a deep learning model to replace the finite element analysis (FEA) was proposed.This deep learning model was divided into unsupervised learning module and supervised learning module.Firstly,an unsupervised learning module wa...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
POSTS&TELECOM PRESS Co., LTD
2019-09-01
|
| Series: | 智能科学与技术学报 |
| Subjects: | |
| Online Access: | http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.201934 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846171217863639040 |
|---|---|
| author | Yuanping LIU Yukai SONG Xiaoyan ZHANG Xianqiang LIU |
| author_facet | Yuanping LIU Yukai SONG Xiaoyan ZHANG Xianqiang LIU |
| author_sort | Yuanping LIU |
| collection | DOAJ |
| description | Aiming at the problem of the stress distribution algorithm of hip cartilage,a deep learning model to replace the finite element analysis (FEA) was proposed.This deep learning model was divided into unsupervised learning module and supervised learning module.Firstly,an unsupervised learning module was adopted to encode the shape of hip cartilage and femur.Then the coding and decoding of stress distribution implement was implemented so that stress data can be combined with the neural network.Next a supervised learning module supervised by the stress data was used,and the model uses neural networks to learn a mapping relationship from the shape code of the hip cartilage and femur to the stress code of the stress distribution.Finally,a fitted deep learning model was obtained.This deep learning model can simulate the FEA method to a certain extent.But the mean absolute error and the normalized mean absolute error are still larger than that of the FEA method,so the FEA method cannot be completely replaced by our deep learning model.Meanwhile,the limitations of the deep learning model in the use of input features were studied,and a direction to improve the performance of the model was proposed. |
| format | Article |
| id | doaj-art-c70e87c9bddc419a8222ea6513ef95df |
| institution | Kabale University |
| issn | 2096-6652 |
| language | zho |
| publishDate | 2019-09-01 |
| publisher | POSTS&TELECOM PRESS Co., LTD |
| record_format | Article |
| series | 智能科学与技术学报 |
| spelling | doaj-art-c70e87c9bddc419a8222ea6513ef95df2024-11-11T06:51:18ZzhoPOSTS&TELECOM PRESS Co., LTD智能科学与技术学报2096-66522019-09-01126026859636410Research on hip joint stress distribution algorithms based on deep learningYuanping LIUYukai SONGXiaoyan ZHANGXianqiang LIUAiming at the problem of the stress distribution algorithm of hip cartilage,a deep learning model to replace the finite element analysis (FEA) was proposed.This deep learning model was divided into unsupervised learning module and supervised learning module.Firstly,an unsupervised learning module was adopted to encode the shape of hip cartilage and femur.Then the coding and decoding of stress distribution implement was implemented so that stress data can be combined with the neural network.Next a supervised learning module supervised by the stress data was used,and the model uses neural networks to learn a mapping relationship from the shape code of the hip cartilage and femur to the stress code of the stress distribution.Finally,a fitted deep learning model was obtained.This deep learning model can simulate the FEA method to a certain extent.But the mean absolute error and the normalized mean absolute error are still larger than that of the FEA method,so the FEA method cannot be completely replaced by our deep learning model.Meanwhile,the limitations of the deep learning model in the use of input features were studied,and a direction to improve the performance of the model was proposed.http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.201934hip cartilage;deep learning;stress distribution algorithm;FEA surrogate algorithm |
| spellingShingle | Yuanping LIU Yukai SONG Xiaoyan ZHANG Xianqiang LIU Research on hip joint stress distribution algorithms based on deep learning 智能科学与技术学报 hip cartilage;deep learning;stress distribution algorithm;FEA surrogate algorithm |
| title | Research on hip joint stress distribution algorithms based on deep learning |
| title_full | Research on hip joint stress distribution algorithms based on deep learning |
| title_fullStr | Research on hip joint stress distribution algorithms based on deep learning |
| title_full_unstemmed | Research on hip joint stress distribution algorithms based on deep learning |
| title_short | Research on hip joint stress distribution algorithms based on deep learning |
| title_sort | research on hip joint stress distribution algorithms based on deep learning |
| topic | hip cartilage;deep learning;stress distribution algorithm;FEA surrogate algorithm |
| url | http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.201934 |
| work_keys_str_mv | AT yuanpingliu researchonhipjointstressdistributionalgorithmsbasedondeeplearning AT yukaisong researchonhipjointstressdistributionalgorithmsbasedondeeplearning AT xiaoyanzhang researchonhipjointstressdistributionalgorithmsbasedondeeplearning AT xianqiangliu researchonhipjointstressdistributionalgorithmsbasedondeeplearning |