In Situ Transformed CoOOH@Co<sub>3</sub>S<sub>4</sub> Heterostructured Catalyst for Highly Efficient Catalytic OER Application
The deprived electrochemical kinetics of the oxygen evolution reaction (OER) catalyst is the prime bottleneck and remains the major obstacle in the water electrolysis processes. Herein, a facile hydrothermal technique was implemented to form a freestanding polyhedron-like Co<sub>3</sub>O...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/14/21/1732 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The deprived electrochemical kinetics of the oxygen evolution reaction (OER) catalyst is the prime bottleneck and remains the major obstacle in the water electrolysis processes. Herein, a facile hydrothermal technique was implemented to form a freestanding polyhedron-like Co<sub>3</sub>O<sub>4</sub> on the microporous architecture of Ni foam, its reaction kinetics enhanced through sulfide counterpart transformation in the presence of Na<sub>2</sub>S, and their catalytic OER performances comparatively investigated in 1 M KOH medium. The formed Co<sub>3</sub>S<sub>4</sub> catalyst shows outstanding catalytic OER activity at a current density of 100 mA cm<sup>−2</sup> by achieving a relatively low overpotential of 292 mV compared to the pure Co<sub>3</sub>O<sub>4</sub> catalyst and the commercial IrO<sub>2</sub> catalyst. This enhancement results from the improved active centers and conductivity, which boost the intrinsic reaction kinetics. Further, the optimized Co<sub>3</sub>S<sub>4</sub> catalyst exhibits admirable prolonged durability up to 72 h at varied current rates with insignificant selectivity decay. The energy dispersive X-ray spectroscopy (EDX) and Raman spectra measured after the prolonged OER stability test reveal a partial transformation of the active catalyst into an oxyhydroxide phase (i.e., CoOOH@Co<sub>3</sub>S<sub>4</sub>), which acts as an active catalyst phase during the electrolysis process. |
|---|---|
| ISSN: | 2079-4991 |