Global lake phytoplankton proliferation intensifies climate warming
Abstract In lakes, phytoplankton sequester atmospheric carbon dioxide (CO2) and store it in the form of biomass organic carbon (OC); however, only a small fraction of the OC remains buried, while the remaining part is recycled to the atmosphere as CO2 and methane (CH4). This has the potential effect...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-12-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-54926-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract In lakes, phytoplankton sequester atmospheric carbon dioxide (CO2) and store it in the form of biomass organic carbon (OC); however, only a small fraction of the OC remains buried, while the remaining part is recycled to the atmosphere as CO2 and methane (CH4). This has the potential effect of adding CO2-equivalents (CO2-eq) to the atmosphere and producing a warming effect due to the higher radiative forcing of CH4 relative to CO2. Here we show a 3.1-fold increase in CO2-eq emissions over a 100-year horizon, with the effect increasing with global warming intensity. Climate warming has stimulated phytoplankton growth in many lakes worldwide, which, in turn, can feed back CO2-eq and create a positive feedback loop between them. In lakes where phytoplankton is negatively impacted by climate warming, the CO2-eq feedback capacity may diminish gradually with the ongoing climate warming. |
|---|---|
| ISSN: | 2041-1723 |