Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate

Several low-cost force plates have been proposed as alternatives for laboratory-grade force plates. Nevertheless, the inability to quantify bilateral ground reaction force (GRF) prevents these inexpensive force plates from being used for biomechanical analysis and certain clinical metric acquisitio...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Heng Yeo, Muhammad Fauzinizam Razali, Zaidi Mohd Ripin, Nur-Akasyah J., Mohamad Ikhwan Zaini Ridzwan, Alexander Wai Teng Tan, Jia Yi Tay
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3379
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549957816909824
author Ying Heng Yeo
Muhammad Fauzinizam Razali
Zaidi Mohd Ripin
Nur-Akasyah J.
Mohamad Ikhwan Zaini Ridzwan
Alexander Wai Teng Tan
Jia Yi Tay
author_facet Ying Heng Yeo
Muhammad Fauzinizam Razali
Zaidi Mohd Ripin
Nur-Akasyah J.
Mohamad Ikhwan Zaini Ridzwan
Alexander Wai Teng Tan
Jia Yi Tay
author_sort Ying Heng Yeo
collection DOAJ
description Several low-cost force plates have been proposed as alternatives for laboratory-grade force plates. Nevertheless, the inability to quantify bilateral ground reaction force (GRF) prevents these inexpensive force plates from being used for biomechanical analysis and certain clinical metric acquisition. This study developed deep-learning models, such as autoencoder and U-net, to predict bilateral GRF from vertical GRF measured using a low-cost custom force plate during sit-to-stand, gait initialization, and gait. Results indicated that the U-net model, which utilized STFT vertical GRF as input, performed the best. In addition to predicting the mediolateral GRF measured during sit-to-stand, the model accurately predicted the anterior-posterior and mediolateral GRF for sit-to-stand, gait initialization, and gait in the test dataset, achieving high Pearson's correlation coefficient, coefficient of determination, and intraclass correlation coefficient values of over 0.90, 0.79, and 0.89, respectively. The model demonstrated a higher Pearson's correlation coefficient compared to three related previous studies that utilized different methods to predict anterior-posterior GRF and six studies in inferring mediolateral GRF. The results demonstrated the potential of TFU and custom force plate as a GRF measurement tool to perform bio-mechanical analysis. ABSTRAK: Beberapa plat daya kos rendah telah dicadangkan sebagai alternatif kepada plat daya berkualiti makmal. Walau bagaimanapun, ketidakmampuan untuk mengukur daya reaksi tanah (GRF) secara bilateral menghalang plat daya yang murah ini daripada digunakan untuk analisis biomekanik dan pengambilan metrik klinikal tertentu. Kajian ini membangunkan model pembelajaran mendalam, seperti autoencoder dan U-net, untuk meramalkan GRF bilateral daripada GRF menegak yang diukur menggunakan plat daya khas kos rendah semasa pergerakan duduk-ke-berdiri, permulaan berjalan, dan berjalan. Hasil menunjukkan bahawa model U-net, yang menggunakan GRF menegak STFT sebagai input, memberikan prestasi terbaik. Selain meramalkan GRF mediolateral yang diukur semasa duduk-ke-berdiri, model ini juga meramalkan dengan tepat GRF anterior-posterior dan mediolateral untuk duduk-ke-berdiri, permulaan berjalan, dan berjalan dalam set data ujian, mencapai nilai koefisien korelasi Pearson, koefisien penentuan, dan koefisien korelasi intrakelas yang tinggi melebihi 0.90, 0.79, dan 0.89, masing-masing. Model ini menunjukkan koefisien korelasi Pearson yang lebih tinggi berbanding tiga kajian terdahulu yang berkaitan yang menggunakan kaedah berbeza untuk meramalkan GRF anterior-posterior dan enam kajian dalam menyimpulkan GRF mediolateral. Hasil kajian menunjukkan potensi TFU dan plat daya khas sebagai alat pengukuran GRF untuk melakukan analisis biomekanik.
format Article
id doaj-art-c6381cb2787b4b2aa552c1245682af48
institution Kabale University
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-c6381cb2787b4b2aa552c1245682af482025-01-10T12:40:40ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.3379Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force PlateYing Heng Yeo0https://orcid.org/0000-0003-1282-7497Muhammad Fauzinizam Razali1https://orcid.org/0000-0001-9181-455XZaidi Mohd Ripin2https://orcid.org/0000-0001-9770-1409Nur-Akasyah J.3https://orcid.org/0000-0002-6416-4421Mohamad Ikhwan Zaini Ridzwan4https://orcid.org/0000-0002-3826-2642Alexander Wai Teng Tan5Jia Yi Tay6Universiti Sains Malaysia Universiti Sains Malaysia Universiti Sains Malaysia Universiti Sains Malaysia Universiti Sains Malaysia Universiti Sains MalaysiaUniversiti Sains Malaysia Several low-cost force plates have been proposed as alternatives for laboratory-grade force plates. Nevertheless, the inability to quantify bilateral ground reaction force (GRF) prevents these inexpensive force plates from being used for biomechanical analysis and certain clinical metric acquisition. This study developed deep-learning models, such as autoencoder and U-net, to predict bilateral GRF from vertical GRF measured using a low-cost custom force plate during sit-to-stand, gait initialization, and gait. Results indicated that the U-net model, which utilized STFT vertical GRF as input, performed the best. In addition to predicting the mediolateral GRF measured during sit-to-stand, the model accurately predicted the anterior-posterior and mediolateral GRF for sit-to-stand, gait initialization, and gait in the test dataset, achieving high Pearson's correlation coefficient, coefficient of determination, and intraclass correlation coefficient values of over 0.90, 0.79, and 0.89, respectively. The model demonstrated a higher Pearson's correlation coefficient compared to three related previous studies that utilized different methods to predict anterior-posterior GRF and six studies in inferring mediolateral GRF. The results demonstrated the potential of TFU and custom force plate as a GRF measurement tool to perform bio-mechanical analysis. ABSTRAK: Beberapa plat daya kos rendah telah dicadangkan sebagai alternatif kepada plat daya berkualiti makmal. Walau bagaimanapun, ketidakmampuan untuk mengukur daya reaksi tanah (GRF) secara bilateral menghalang plat daya yang murah ini daripada digunakan untuk analisis biomekanik dan pengambilan metrik klinikal tertentu. Kajian ini membangunkan model pembelajaran mendalam, seperti autoencoder dan U-net, untuk meramalkan GRF bilateral daripada GRF menegak yang diukur menggunakan plat daya khas kos rendah semasa pergerakan duduk-ke-berdiri, permulaan berjalan, dan berjalan. Hasil menunjukkan bahawa model U-net, yang menggunakan GRF menegak STFT sebagai input, memberikan prestasi terbaik. Selain meramalkan GRF mediolateral yang diukur semasa duduk-ke-berdiri, model ini juga meramalkan dengan tepat GRF anterior-posterior dan mediolateral untuk duduk-ke-berdiri, permulaan berjalan, dan berjalan dalam set data ujian, mencapai nilai koefisien korelasi Pearson, koefisien penentuan, dan koefisien korelasi intrakelas yang tinggi melebihi 0.90, 0.79, dan 0.89, masing-masing. Model ini menunjukkan koefisien korelasi Pearson yang lebih tinggi berbanding tiga kajian terdahulu yang berkaitan yang menggunakan kaedah berbeza untuk meramalkan GRF anterior-posterior dan enam kajian dalam menyimpulkan GRF mediolateral. Hasil kajian menunjukkan potensi TFU dan plat daya khas sebagai alat pengukuran GRF untuk melakukan analisis biomekanik. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3379Force plateDeep learning modelGround reaction forcePredictionValidation
spellingShingle Ying Heng Yeo
Muhammad Fauzinizam Razali
Zaidi Mohd Ripin
Nur-Akasyah J.
Mohamad Ikhwan Zaini Ridzwan
Alexander Wai Teng Tan
Jia Yi Tay
Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
International Islamic University Malaysia Engineering Journal
Force plate
Deep learning model
Ground reaction force
Prediction
Validation
title Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
title_full Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
title_fullStr Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
title_full_unstemmed Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
title_short Bilateral Ground Reaction Force Prediction Using Deep Learning Models and Custom Force Plate
title_sort bilateral ground reaction force prediction using deep learning models and custom force plate
topic Force plate
Deep learning model
Ground reaction force
Prediction
Validation
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3379
work_keys_str_mv AT yinghengyeo bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT muhammadfauzinizamrazali bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT zaidimohdripin bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT nurakasyahj bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT mohamadikhwanzainiridzwan bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT alexanderwaitengtan bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate
AT jiayitay bilateralgroundreactionforcepredictionusingdeeplearningmodelsandcustomforceplate