Compressed Air Energy Storage in Salt Caverns Optimization in Southern Ontario, Canada
Energy storage systems are gaining increasing attention as a solution to the inherent intermittency of renewable energy sources such as solar and wind power. Among large-scale energy storage technologies, compressed air energy storage (CAES) stands out for its natural sealing properties and cost-eff...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/9/2258 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Energy storage systems are gaining increasing attention as a solution to the inherent intermittency of renewable energy sources such as solar and wind power. Among large-scale energy storage technologies, compressed air energy storage (CAES) stands out for its natural sealing properties and cost-efficiency. Having abundant salt resources, the thick and regionally extensive salt deposits in Unit B of Southern Ontario, Canada, demonstrate significant potential for CAES development. In this study, optimization for essential CAES salt cavern parameters are conducted using geological data from Unit B salt deposit. Cylinder-shaped and ellipsoid-shaped caverns with varying diameters are first simulated to determine the optimal geometry. To optimize the best operating pressure range, stationary simulations are first conducted, followed by tightness evaluation and long-term stability simulation that assess plastic and creep deformation. The results indicate that a cylinder-shaped cavern with a diameter 1.5 times its height provides the best balance between storage capacity and structural stability. While ellipsoid shape reduces stress concentration significantly, it also leads to increased deformation in the shale interlayers, making them more susceptible to failure. Additionally, the findings suggest that the optimal operating pressure lies between 0.4 and 0.7 times the vertical stress, maintaining large capacity and minor gas leakage, and developing the least creep deformation. |
|---|---|
| ISSN: | 1996-1073 |