New Cryptanalysis of Prime Power RSA with Two Private Exponents

Prime Power RSA is a variant of the RSA scheme due to Takagi with modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><m...

Full description

Saved in:
Bibliographic Details
Main Authors: Shixiong Wang, Minghao Sun
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/21/3411
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846173341327556608
author Shixiong Wang
Minghao Sun
author_facet Shixiong Wang
Minghao Sun
author_sort Shixiong Wang
collection DOAJ
description Prime Power RSA is a variant of the RSA scheme due to Takagi with modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mi>r</mi></msup><mi>q</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>⩾</mo><mn>2</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula> are of the same bit-size. In this paper, we concentrate on one type of Prime Power RSA which assumes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>·</mo><mi>d</mi><mo>≡</mo><mn>1</mn><mspace width="4pt"></mspace><mi>mod</mi><mspace width="4pt"></mspace><msup><mi>p</mi><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Two new attacks on this type of Prime Power RSA are presented when given two pairs of public and private exponents, namely, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>e</mi><mn>1</mn></msub><mo>,</mo><msub><mi>d</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>e</mi><mn>2</mn></msub><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> with the same modulus <i>N</i>. Suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mn>1</mn></msub><mo><</mo><msup><mi>N</mi><msub><mi>β</mi><mn>1</mn></msub></msup><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo><</mo><msup><mi>N</mi><msub><mi>β</mi><mn>2</mn></msub></msup></mrow></semantics></math></inline-formula>. In 2015, Zheng and Hu showed that when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>, <i>N</i> may be factored in probabilistic polynomial time. The first attack of this paper shows that one can obtain the factorization of <i>N</i> in probabilistic polynomial time, provided that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><mi>r</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>. Later, in the second attack, we improve both the first attack and the attack of Zheng and Hu, and show that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><mi>r</mi><msup><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> already suffices to break the Prime Power RSA. By introducing multiple parameters, our lattice constructions take full advantage of known information, and obtain the best known attack. Specifically, we make full use of the information that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mi>r</mi></msup></semantics></math></inline-formula> is a divisor of <i>N</i>, while the attack of Zheng and Hu only assumes that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is a divisor of <i>N</i>. As a consequence, this method implies a better lattice construction, and thus improves the previous attack. The experiments which reach a better upper bound than before also verify it. Our approaches are based on Coppersmith’s method for finding small roots of bivariate modular polynomial equations.
format Article
id doaj-art-c55e9d01ed5c4c3d9ce05ab0cd7e749b
institution Kabale University
issn 2227-7390
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-c55e9d01ed5c4c3d9ce05ab0cd7e749b2024-11-08T14:37:51ZengMDPI AGMathematics2227-73902024-10-011221341110.3390/math12213411New Cryptanalysis of Prime Power RSA with Two Private ExponentsShixiong Wang0Minghao Sun1Academy of Military Sciences, Beijing 100091, ChinaThe PAP Command College, Tianjin 300100, ChinaPrime Power RSA is a variant of the RSA scheme due to Takagi with modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mi>r</mi></msup><mi>q</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>⩾</mo><mn>2</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula> are of the same bit-size. In this paper, we concentrate on one type of Prime Power RSA which assumes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>·</mo><mi>d</mi><mo>≡</mo><mn>1</mn><mspace width="4pt"></mspace><mi>mod</mi><mspace width="4pt"></mspace><msup><mi>p</mi><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Two new attacks on this type of Prime Power RSA are presented when given two pairs of public and private exponents, namely, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>e</mi><mn>1</mn></msub><mo>,</mo><msub><mi>d</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>e</mi><mn>2</mn></msub><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> with the same modulus <i>N</i>. Suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mn>1</mn></msub><mo><</mo><msup><mi>N</mi><msub><mi>β</mi><mn>1</mn></msub></msup><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo><</mo><msup><mi>N</mi><msub><mi>β</mi><mn>2</mn></msub></msup></mrow></semantics></math></inline-formula>. In 2015, Zheng and Hu showed that when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>, <i>N</i> may be factored in probabilistic polynomial time. The first attack of this paper shows that one can obtain the factorization of <i>N</i> in probabilistic polynomial time, provided that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><mi>r</mi><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>. Later, in the second attack, we improve both the first attack and the attack of Zheng and Hu, and show that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub><msub><mi>β</mi><mn>2</mn></msub><mo><</mo><mi>r</mi><msup><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>/</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> already suffices to break the Prime Power RSA. By introducing multiple parameters, our lattice constructions take full advantage of known information, and obtain the best known attack. Specifically, we make full use of the information that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mi>r</mi></msup></semantics></math></inline-formula> is a divisor of <i>N</i>, while the attack of Zheng and Hu only assumes that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is a divisor of <i>N</i>. As a consequence, this method implies a better lattice construction, and thus improves the previous attack. The experiments which reach a better upper bound than before also verify it. Our approaches are based on Coppersmith’s method for finding small roots of bivariate modular polynomial equations.https://www.mdpi.com/2227-7390/12/21/3411prime power RSAtwo private exponentslatticeCoppersmith’s methodLLL algorithm
spellingShingle Shixiong Wang
Minghao Sun
New Cryptanalysis of Prime Power RSA with Two Private Exponents
Mathematics
prime power RSA
two private exponents
lattice
Coppersmith’s method
LLL algorithm
title New Cryptanalysis of Prime Power RSA with Two Private Exponents
title_full New Cryptanalysis of Prime Power RSA with Two Private Exponents
title_fullStr New Cryptanalysis of Prime Power RSA with Two Private Exponents
title_full_unstemmed New Cryptanalysis of Prime Power RSA with Two Private Exponents
title_short New Cryptanalysis of Prime Power RSA with Two Private Exponents
title_sort new cryptanalysis of prime power rsa with two private exponents
topic prime power RSA
two private exponents
lattice
Coppersmith’s method
LLL algorithm
url https://www.mdpi.com/2227-7390/12/21/3411
work_keys_str_mv AT shixiongwang newcryptanalysisofprimepowerrsawithtwoprivateexponents
AT minghaosun newcryptanalysisofprimepowerrsawithtwoprivateexponents