Ensemble Learning-Powered URL Phishing Detection: A Performance Driven Approach
With the rapid growth in the usage of the Internet, criminals have found new ways to engage in cyber-attacks. The most common and widespread attack is URL phishing. The proposed system focuses on improving phishing website detection using feature selection and ensemble learning. This model uses two...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MMU Press
2024-06-01
|
| Series: | Journal of Informatics and Web Engineering |
| Subjects: | |
| Online Access: | https://journals.mmupress.com/index.php/jiwe/article/view/881 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid growth in the usage of the Internet, criminals have found new ways to engage in cyber-attacks. The most common and widespread attack is URL phishing. The proposed system focuses on improving phishing website detection using feature selection and ensemble learning. This model uses two datasets, DS-30 and DS-50, each with 30 and 50 features. Ensemble learning using a voting classifier was then applied to train the model, achieving more accuracy. The combination of HEFS with random forest distribution achieved 94.6% accuracy while minimizing the number of features used (20.8% of the base feature set). The classifier works in the proposed model, and the accuracy is 96% and 98% on the DS-30 and DS-50 datasets, respectively. The hybrid model uses a combination of different factors to distinguish phishing websites from legitimate websites. |
|---|---|
| ISSN: | 2821-370X |