Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression

The current accelerated expansion of the Universe remains one of the most intriguing topics in modern cosmology, driving the search for innovative statistical techniques. Recent advancements in machine learning have significantly enhanced its application across various scientific fields, including p...

Full description

Saved in:
Bibliographic Details
Main Authors: José de Jesús Velázquez, Luis A. Escamilla, Purba Mukherjee, J. Alberto Vázquez
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/10/12/464
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846102524015149056
author José de Jesús Velázquez
Luis A. Escamilla
Purba Mukherjee
J. Alberto Vázquez
author_facet José de Jesús Velázquez
Luis A. Escamilla
Purba Mukherjee
J. Alberto Vázquez
author_sort José de Jesús Velázquez
collection DOAJ
description The current accelerated expansion of the Universe remains one of the most intriguing topics in modern cosmology, driving the search for innovative statistical techniques. Recent advancements in machine learning have significantly enhanced its application across various scientific fields, including physics, and particularly cosmology, where data analysis plays a crucial role in problem-solving. In this work, a non-parametric regression method with Gaussian processes is presented along with several applications to reconstruct some cosmological observables, such as the deceleration parameter and the dark energy equation of state, in order to contribute some information that helps to clarify the behavior of the Universe. It was found that the results are consistent with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>CDM and the predicted value of the Hubble parameter at redshift zero is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mn>68.798</mn><mo>±</mo><mn>6.340</mn><mrow><mo>(</mo><mn>1</mn><mi>σ</mi><mo>)</mo></mrow><mspace width="4.pt"></mspace><mi>km</mi><mspace width="4.pt"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="4.pt"></mspace><msup><mi>Mpc</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-c4d51a4a942d483b8256919979f824f0
institution Kabale University
issn 2218-1997
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj-art-c4d51a4a942d483b8256919979f824f02024-12-27T14:57:19ZengMDPI AGUniverse2218-19972024-12-01101246410.3390/universe10120464Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes RegressionJosé de Jesús Velázquez0Luis A. Escamilla1Purba Mukherjee2J. Alberto Vázquez3Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica Ciudad Universitaria, Mexico City 04510, MexicoInstituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, MexicoCentre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, IndiaInstituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, MexicoThe current accelerated expansion of the Universe remains one of the most intriguing topics in modern cosmology, driving the search for innovative statistical techniques. Recent advancements in machine learning have significantly enhanced its application across various scientific fields, including physics, and particularly cosmology, where data analysis plays a crucial role in problem-solving. In this work, a non-parametric regression method with Gaussian processes is presented along with several applications to reconstruct some cosmological observables, such as the deceleration parameter and the dark energy equation of state, in order to contribute some information that helps to clarify the behavior of the Universe. It was found that the results are consistent with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>CDM and the predicted value of the Hubble parameter at redshift zero is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mn>68.798</mn><mo>±</mo><mn>6.340</mn><mrow><mo>(</mo><mn>1</mn><mi>σ</mi><mo>)</mo></mrow><mspace width="4.pt"></mspace><mi>km</mi><mspace width="4.pt"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="4.pt"></mspace><msup><mi>Mpc</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2218-1997/10/12/464cosmologydark energyHubble parameterdeceleration parameterlinear regressiongaussian process
spellingShingle José de Jesús Velázquez
Luis A. Escamilla
Purba Mukherjee
J. Alberto Vázquez
Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
Universe
cosmology
dark energy
Hubble parameter
deceleration parameter
linear regression
gaussian process
title Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
title_full Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
title_fullStr Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
title_full_unstemmed Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
title_short Non-Parametric Reconstruction of Cosmological Observables Using Gaussian Processes Regression
title_sort non parametric reconstruction of cosmological observables using gaussian processes regression
topic cosmology
dark energy
Hubble parameter
deceleration parameter
linear regression
gaussian process
url https://www.mdpi.com/2218-1997/10/12/464
work_keys_str_mv AT josedejesusvelazquez nonparametricreconstructionofcosmologicalobservablesusinggaussianprocessesregression
AT luisaescamilla nonparametricreconstructionofcosmologicalobservablesusinggaussianprocessesregression
AT purbamukherjee nonparametricreconstructionofcosmologicalobservablesusinggaussianprocessesregression
AT jalbertovazquez nonparametricreconstructionofcosmologicalobservablesusinggaussianprocessesregression