改进MOMEDA方法及其在滚动轴承故障特征增强中的应用

Aiming at the shortcomings of multipoint optimal minimum entropy deconvolution adjusted( MOMEDA) method,which cannot automatically identify the fault impulse period and shorten the length of deconvolved signal when enhancing bearing fault features,an improved MOMEDA( IMOMEDA) method is proposed.The...

Full description

Saved in:
Bibliographic Details
Main Authors: 陈丙炎, 宋冬利, 张卫华, 程尧
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Strength 2021-01-01
Series:Jixie qiangdu
Online Access:http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.001
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841535892038090752
author 陈丙炎
宋冬利
张卫华
程尧
author_facet 陈丙炎
宋冬利
张卫华
程尧
author_sort 陈丙炎
collection DOAJ
description Aiming at the shortcomings of multipoint optimal minimum entropy deconvolution adjusted( MOMEDA) method,which cannot automatically identify the fault impulse period and shorten the length of deconvolved signal when enhancing bearing fault features,an improved MOMEDA( IMOMEDA) method is proposed.The autocorrelation spectrum of square envelope of the vibration signal is used to adaptively identify the fault period,and the estimated impulse period is used to deconvolve the vibration signal to enhance the periodic impulse features.Then the signal waveform extension method is used to extend the deconvolved signal to make its length consistent with the original signal.Finally,the obtained filtered signal is deconvolved for a certain number of times to effectively enhance the periodic features of the original signal.The analysis results of simulated bearing fault signal and railway bearing experiment signals and the comparisons with Kurtogram method show that the improved MOMEDA method can automatically identify the fault impulse period and effectively enhance the fault characteristics of rolling bearing.
format Article
id doaj-art-c47ac6d176024ea8b2c895a3e8a64f93
institution Kabale University
issn 1001-9669
language zho
publishDate 2021-01-01
publisher Editorial Office of Journal of Mechanical Strength
record_format Article
series Jixie qiangdu
spelling doaj-art-c47ac6d176024ea8b2c895a3e8a64f932025-01-15T02:26:31ZzhoEditorial Office of Journal of Mechanical StrengthJixie qiangdu1001-96692021-01-011830609741改进MOMEDA方法及其在滚动轴承故障特征增强中的应用陈丙炎宋冬利张卫华程尧Aiming at the shortcomings of multipoint optimal minimum entropy deconvolution adjusted( MOMEDA) method,which cannot automatically identify the fault impulse period and shorten the length of deconvolved signal when enhancing bearing fault features,an improved MOMEDA( IMOMEDA) method is proposed.The autocorrelation spectrum of square envelope of the vibration signal is used to adaptively identify the fault period,and the estimated impulse period is used to deconvolve the vibration signal to enhance the periodic impulse features.Then the signal waveform extension method is used to extend the deconvolved signal to make its length consistent with the original signal.Finally,the obtained filtered signal is deconvolved for a certain number of times to effectively enhance the periodic features of the original signal.The analysis results of simulated bearing fault signal and railway bearing experiment signals and the comparisons with Kurtogram method show that the improved MOMEDA method can automatically identify the fault impulse period and effectively enhance the fault characteristics of rolling bearing.http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.001
spellingShingle 陈丙炎
宋冬利
张卫华
程尧
改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
Jixie qiangdu
title 改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
title_full 改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
title_fullStr 改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
title_full_unstemmed 改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
title_short 改进MOMEDA方法及其在滚动轴承故障特征增强中的应用
title_sort 改进momeda方法及其在滚动轴承故障特征增强中的应用
url http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.001
work_keys_str_mv AT chénbǐngyán gǎijìnmomedafāngfǎjíqízàigǔndòngzhóuchénggùzhàngtèzhēngzēngqiángzhōngdeyīngyòng
AT sòngdōnglì gǎijìnmomedafāngfǎjíqízàigǔndòngzhóuchénggùzhàngtèzhēngzēngqiángzhōngdeyīngyòng
AT zhāngwèihuá gǎijìnmomedafāngfǎjíqízàigǔndòngzhóuchénggùzhàngtèzhēngzēngqiángzhōngdeyīngyòng
AT chéngyáo gǎijìnmomedafāngfǎjíqízàigǔndòngzhóuchénggùzhàngtèzhēngzēngqiángzhōngdeyīngyòng