Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate.

Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Gang Ye, Fan Bu, Divyasha Saxena, Hailey Turner-Hubbard, Morgan Herbst, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Bin Liu, Jian Zheng, Fang Li
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-11-01
Series:PLoS Pathogens
Online Access:https://doi.org/10.1371/journal.ppat.1012726
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.
ISSN:1553-7366
1553-7374