The Potential Impact of Nuclear Conflict on Ocean Acidification
Abstract We demonstrate that the global cooling resulting from a range of nuclear conflict scenarios would temporarily increase the pH in the surface ocean by up to 0.06 units over a 5‐year period, briefly alleviating the decline in pH associated with ocean acidification. Conversely, the global cool...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-02-01
|
| Series: | Geophysical Research Letters |
| Online Access: | https://doi.org/10.1029/2019GL086246 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract We demonstrate that the global cooling resulting from a range of nuclear conflict scenarios would temporarily increase the pH in the surface ocean by up to 0.06 units over a 5‐year period, briefly alleviating the decline in pH associated with ocean acidification. Conversely, the global cooling dissolves atmospheric carbon into the upper ocean, driving a 0.1 to 0.3 unit decrease in the aragonite saturation state ( Ωarag) that persists for ∼10 years. The peak anomaly in pH occurs 2 years post conflict, while the Ωarag anomaly peaks 4‐ to 5‐years post conflict. The decrease in Ωarag would exacerbate a primary threat of ocean acidification: the inability of marine calcifying organisms to maintain their shells/skeletons in a corrosive environment. Our results are based on sensitivity simulations conducted with a state‐of‐the‐art Earth system model integrated under various black carbon (soot) external forcings. Our findings suggest that regional nuclear conflict may have ramifications for global ocean acidification. |
|---|---|
| ISSN: | 0094-8276 1944-8007 |