Development of a rapid on-site nucleic acid detection method for new genotype muscovy duck parvovirus based on RPA-CRISPR/Cas12a

New genotype Muscovy Duck Parvovirus (N-MDPV), a member of the Parvoviridae family, exhibits broad host tropism affecting Muscovy ducks, semi-Muscovy ducks, and white Kaiva duck. This pathogen causes severe morbidity and mortality in ducklings under 3 weeks of age, characterized by classic parvovira...

Full description

Saved in:
Bibliographic Details
Main Authors: Qizhang Liang, Wei Chen, Weiwei Wang, Rongchang Liu, Qiuling Fu, Guanghua Fu, Longfei Cheng, Nansong Jiang, Hongmei Chen, Yu Huang
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-08-01
Series:Frontiers in Veterinary Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fvets.2025.1621697/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New genotype Muscovy Duck Parvovirus (N-MDPV), a member of the Parvoviridae family, exhibits broad host tropism affecting Muscovy ducks, semi-Muscovy ducks, and white Kaiva duck. This pathogen causes severe morbidity and mortality in ducklings under 3 weeks of age, characterized by classic parvoviral lesions, beak atrophy, and growth retardation, posing substantial economic threats to China’s duck industry. To address diagnostic challenges, we developed an equipment-free detection platform targeting the conserved VP3 gene of N-MDPV. By integrating recombinase polymerase amplification (RPA) with CRISPR/Cas12a-mediated lateral flow strip (LFS) visualization, this method achieved isothermal amplification at 37°C within 35 min, eliminating dependency on thermocyclers. Validation experiments demonstrated exceptional sensitivity with a detection limit of 1.3 gene copies. Specificity testing revealed no cross-reactivity with eight common avian pathogens, confirming target exclusivity. Clinical validation using 98 field-collected duck tissue samples showed 98.98% concordance between our RPA-CRISPR/Cas12a-LFS and quantitative PCR. This study establishes the first CRISPR/Cas12a-based on-site diagnostic tool for N-MDPV, combining rapidity, sensitivity, accuracy and field-deployability.
ISSN:2297-1769