Experimental Investigation of Heat Pump Modules Limited to 150 g of Refrigerant R290 and a Dedicated Test Rig

Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge d...

Full description

Saved in:
Bibliographic Details
Main Authors: Stephan Preisinger, Michael Lauermann, Micha Schwarzfurtner, Sebastian Fischer, Stephan Kling, Heinz Moisi, Christoph Reichl
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/10/2455
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite its immense potential to lower urban greenhouse gas emissions. To address this, the following paper describes the development of a compact, modular heat pump system designed to replace conventional gas boilers, focusing on the building and testing of a prototype for such a modular heat pump system. The prototype supports multiple functionalities, including space heating, cooling, and domestic hot water production. The performance advantages of two different compressor technologies were exploited to optimize the efficiency of the complete system and the pressure lifts associated with applications for heating and domestic hot water production. Thus, measurements were conducted across a range of operating points, comparing different heat pump module types. In the case of the piston compressor module, the Carnot efficiency was in the range of 47.2% to 50.4%. The total isentropic efficiency for floor heating and domestic hot water production was above 0.45 for both piston and rotary compressors.
ISSN:1996-1073