Global Multi-Phase Path Planning Through High-Level Reinforcement Learning

In this paper, we introduce the <italic>Global Multi-Phase Path Planning</italic> (<monospace><inline-formula><tex-math notation="LaTeX">$GMP^{3}$</tex-math></inline-formula></monospace>) algorithm in planner problems, which computes fast and...

Full description

Saved in:
Bibliographic Details
Main Authors: Babak Salamat, Sebastian-Sven Olzem, Gerhard Elsbacher, Andrea M. Tonello
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Control Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10613437/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841554062967832576
author Babak Salamat
Sebastian-Sven Olzem
Gerhard Elsbacher
Andrea M. Tonello
author_facet Babak Salamat
Sebastian-Sven Olzem
Gerhard Elsbacher
Andrea M. Tonello
author_sort Babak Salamat
collection DOAJ
description In this paper, we introduce the <italic>Global Multi-Phase Path Planning</italic> (<monospace><inline-formula><tex-math notation="LaTeX">$GMP^{3}$</tex-math></inline-formula></monospace>) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm&#x0027;s effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method&#x0027;s convergence guarantees using Lyapunov&#x2019;s stability theorem and underscore its computational advantages.
format Article
id doaj-art-c0c4148da18b4ae6a48f855a7c4a1404
institution Kabale University
issn 2694-085X
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Control Systems
spelling doaj-art-c0c4148da18b4ae6a48f855a7c4a14042025-01-09T00:03:12ZengIEEEIEEE Open Journal of Control Systems2694-085X2024-01-01340541510.1109/OJCSYS.2024.343508010613437Global Multi-Phase Path Planning Through High-Level Reinforcement LearningBabak Salamat0https://orcid.org/0000-0001-7262-3264Sebastian-Sven Olzem1https://orcid.org/0009-0001-8995-7209Gerhard Elsbacher2https://orcid.org/0000-0002-8297-5033Andrea M. Tonello3https://orcid.org/0000-0002-9873-2407AImotion Institute, Technische Hochschule Ingolstadt, Ingolstadt, GermanyAImotion Institute, Technische Hochschule Ingolstadt, Ingolstadt, GermanyAImotion Institute, Technische Hochschule Ingolstadt, Ingolstadt, GermanyInstitute of Networked and Embedded Systems, Alpen-Adria University Klagenfurt, Klagenfurt, AustriaIn this paper, we introduce the <italic>Global Multi-Phase Path Planning</italic> (<monospace><inline-formula><tex-math notation="LaTeX">$GMP^{3}$</tex-math></inline-formula></monospace>) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm&#x0027;s effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method&#x0027;s convergence guarantees using Lyapunov&#x2019;s stability theorem and underscore its computational advantages.https://ieeexplore.ieee.org/document/10613437/High level reinforcement learningmulti-phase path planning
spellingShingle Babak Salamat
Sebastian-Sven Olzem
Gerhard Elsbacher
Andrea M. Tonello
Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
IEEE Open Journal of Control Systems
High level reinforcement learning
multi-phase path planning
title Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
title_full Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
title_fullStr Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
title_full_unstemmed Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
title_short Global Multi-Phase Path Planning Through High-Level Reinforcement Learning
title_sort global multi phase path planning through high level reinforcement learning
topic High level reinforcement learning
multi-phase path planning
url https://ieeexplore.ieee.org/document/10613437/
work_keys_str_mv AT babaksalamat globalmultiphasepathplanningthroughhighlevelreinforcementlearning
AT sebastiansvenolzem globalmultiphasepathplanningthroughhighlevelreinforcementlearning
AT gerhardelsbacher globalmultiphasepathplanningthroughhighlevelreinforcementlearning
AT andreamtonello globalmultiphasepathplanningthroughhighlevelreinforcementlearning