Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry

Introduction: The genus Morganella, including clinically isolated species M. sibonii and M. morganii, has a still underexplored role in clinical microbiology. Despite the clinical relevance of Morganella spp., current MALDI-TOF commercial systems fail to differentiate these species. Whole genome seq...

Full description

Saved in:
Bibliographic Details
Main Authors: Mathilde Duque, Cécile Emeraud, Rémy A. Bonnin, Quentin Giai-Gianetto, Laurent Dortet, Alexandre Godmer
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Journal of Mass Spectrometry and Advances in the Clinical Lab
Online Access:http://www.sciencedirect.com/science/article/pii/S2667145X25000185
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849226890434314240
author Mathilde Duque
Cécile Emeraud
Rémy A. Bonnin
Quentin Giai-Gianetto
Laurent Dortet
Alexandre Godmer
author_facet Mathilde Duque
Cécile Emeraud
Rémy A. Bonnin
Quentin Giai-Gianetto
Laurent Dortet
Alexandre Godmer
author_sort Mathilde Duque
collection DOAJ
description Introduction: The genus Morganella, including clinically isolated species M. sibonii and M. morganii, has a still underexplored role in clinical microbiology. Despite the clinical relevance of Morganella spp., current MALDI-TOF commercial systems fail to differentiate these species. Whole genome sequencing (WGS) remains the most effective method to distinguish species. However, this method is not adapted for routine lab workflow. Enhancing MALDI-TOF’s accuracy could make it a rapid and effective approach for distinguishing Morganella species in routine laboratory diagnostics. Objectives: This study aims to improve the performance of MALDI-TOF for identifying Morganella spp. using WGS as the gold-standard reference method. Methods: We applied Machine Learning (ML) algorithms to a collection of 235 clinicial Morganella spp. strains to develop an optimized identification model. Whole genome sequencing was used to characterize these strains and perform phylogenetic analysis, categorizing 209 strains as M. morganii and 26 as M. sibonii. Results: The ML-based classifiers showed improved identification accuracy (44 of the 160 designed with accuracy at 1). Also, MS analysis identified 11 peaks able to discriminate between M. morganii and M. sibonii. Conclusion: Through development of a publicly-available online ML-based classifier, this study has improved the capacity of MALDI-TOF for distinguishing Morganella spp., providing a reliable, user-friendly solution suited to routine clinical diagnostics and supporting a better understanding of the roles of M. morganii and M. sibonii in human pathology.
format Article
id doaj-art-bf818993c2c24565b1ca6f1ff0dd7ad6
institution Kabale University
issn 2667-145X
language English
publishDate 2025-08-01
publisher Elsevier
record_format Article
series Journal of Mass Spectrometry and Advances in the Clinical Lab
spelling doaj-art-bf818993c2c24565b1ca6f1ff0dd7ad62025-08-24T05:14:57ZengElsevierJournal of Mass Spectrometry and Advances in the Clinical Lab2667-145X2025-08-013791310.1016/j.jmsacl.2025.04.011Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometryMathilde Duque0Cécile Emeraud1Rémy A. Bonnin2Quentin Giai-Gianetto3Laurent Dortet4Alexandre Godmer5Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)”, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, FranceTeam “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)”, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, FranceTeam “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)”, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, FranceInstitut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France; Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR CNRS 2024, Paris, FranceTeam “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)”, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, FranceU1135, Centre d’Immunologie et des Maladies Infectieuses (Cimi-Paris), Sorbonne Université, Paris, France; Bacteriology Deparment, Saint-Antoine Hospital, AP-HP. Sorbonne Université (Assistance Publique Hôpitaux de Paris), Paris, France; Corresponding author at: U1135, Centre d’Immunologie et des Maladies Infectieuses (Cimi-Paris), Sorbonne Université, Paris, France.Introduction: The genus Morganella, including clinically isolated species M. sibonii and M. morganii, has a still underexplored role in clinical microbiology. Despite the clinical relevance of Morganella spp., current MALDI-TOF commercial systems fail to differentiate these species. Whole genome sequencing (WGS) remains the most effective method to distinguish species. However, this method is not adapted for routine lab workflow. Enhancing MALDI-TOF’s accuracy could make it a rapid and effective approach for distinguishing Morganella species in routine laboratory diagnostics. Objectives: This study aims to improve the performance of MALDI-TOF for identifying Morganella spp. using WGS as the gold-standard reference method. Methods: We applied Machine Learning (ML) algorithms to a collection of 235 clinicial Morganella spp. strains to develop an optimized identification model. Whole genome sequencing was used to characterize these strains and perform phylogenetic analysis, categorizing 209 strains as M. morganii and 26 as M. sibonii. Results: The ML-based classifiers showed improved identification accuracy (44 of the 160 designed with accuracy at 1). Also, MS analysis identified 11 peaks able to discriminate between M. morganii and M. sibonii. Conclusion: Through development of a publicly-available online ML-based classifier, this study has improved the capacity of MALDI-TOF for distinguishing Morganella spp., providing a reliable, user-friendly solution suited to routine clinical diagnostics and supporting a better understanding of the roles of M. morganii and M. sibonii in human pathology.http://www.sciencedirect.com/science/article/pii/S2667145X25000185
spellingShingle Mathilde Duque
Cécile Emeraud
Rémy A. Bonnin
Quentin Giai-Gianetto
Laurent Dortet
Alexandre Godmer
Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
Journal of Mass Spectrometry and Advances in the Clinical Lab
title Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
title_full Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
title_fullStr Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
title_full_unstemmed Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
title_short Enhanced identification of Morganella spp. using MALDI-TOF mass spectrometry
title_sort enhanced identification of morganella spp using maldi tof mass spectrometry
url http://www.sciencedirect.com/science/article/pii/S2667145X25000185
work_keys_str_mv AT mathildeduque enhancedidentificationofmorganellasppusingmalditofmassspectrometry
AT cecileemeraud enhancedidentificationofmorganellasppusingmalditofmassspectrometry
AT remyabonnin enhancedidentificationofmorganellasppusingmalditofmassspectrometry
AT quentingiaigianetto enhancedidentificationofmorganellasppusingmalditofmassspectrometry
AT laurentdortet enhancedidentificationofmorganellasppusingmalditofmassspectrometry
AT alexandregodmer enhancedidentificationofmorganellasppusingmalditofmassspectrometry