Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels

After years of research and development, flexible sensors are gradually evolving from the traditional “electronic” paradigm to the “ionic” dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianyu Yin, Peixue Jia, Ziqi Ren, Qixiang Zhang, Wenzhong Lu, Qianqian Yao, Mingfang Deng, Xubin Zhou, Yihua Gao, Nishuang Liu
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2025-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0571
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After years of research and development, flexible sensors are gradually evolving from the traditional “electronic” paradigm to the “ionic” dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human–machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.
ISSN:2639-5274