Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>

Ternary In<sub>1−x</sub>Ga<sub>x</sub>P quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP...

Full description

Saved in:
Bibliographic Details
Main Authors: Calem Duah, Ji-Seoung Jeong, Ji Yeon Ryu, Bo Keun Park, Young Kuk Lee, Seon Joo Lee
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/1/35
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549173759934464
author Calem Duah
Ji-Seoung Jeong
Ji Yeon Ryu
Bo Keun Park
Young Kuk Lee
Seon Joo Lee
author_facet Calem Duah
Ji-Seoung Jeong
Ji Yeon Ryu
Bo Keun Park
Young Kuk Lee
Seon Joo Lee
author_sort Calem Duah
collection DOAJ
description Ternary In<sub>1−x</sub>Ga<sub>x</sub>P quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core–shell structure readily forms. Herein, we introduce a novel synthesis approach using the indium precursor [In(btsa)<sub>2</sub>Cl]<sub>2</sub> and GaI<sub>3</sub> to fabricate In<sub>1−x</sub>Ga<sub>x</sub>P QDs in a single step at relatively low temperatures (200 °C). By adjusting the GaI<sub>3</sub> content, we achieved controlled emission tuning from red to blue. Structural and compositional analysis through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed successful Ga<sup>3+</sup> incorporation into the QD core, with a corresponding blue shift in the emission as GaI<sub>3</sub> content increased. The synthesized QDs demonstrated a photoluminescence quantum yield (PLQY) of ~50% and a full width at half maximum (FWHM) of 45~62 nm, highlighting the potential of this synthesis method for advanced optoelectronic applications.
format Article
id doaj-art-bea34b2b4c3744698b87fa9a156b5419
institution Kabale University
issn 1420-3049
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj-art-bea34b2b4c3744698b87fa9a156b54192025-01-10T13:18:40ZengMDPI AGMolecules1420-30492024-12-013013510.3390/molecules30010035Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>Calem Duah0Ji-Seoung Jeong1Ji Yeon Ryu2Bo Keun Park3Young Kuk Lee4Seon Joo Lee5Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of KoreaTernary In<sub>1−x</sub>Ga<sub>x</sub>P quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core–shell structure readily forms. Herein, we introduce a novel synthesis approach using the indium precursor [In(btsa)<sub>2</sub>Cl]<sub>2</sub> and GaI<sub>3</sub> to fabricate In<sub>1−x</sub>Ga<sub>x</sub>P QDs in a single step at relatively low temperatures (200 °C). By adjusting the GaI<sub>3</sub> content, we achieved controlled emission tuning from red to blue. Structural and compositional analysis through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed successful Ga<sup>3+</sup> incorporation into the QD core, with a corresponding blue shift in the emission as GaI<sub>3</sub> content increased. The synthesized QDs demonstrated a photoluminescence quantum yield (PLQY) of ~50% and a full width at half maximum (FWHM) of 45~62 nm, highlighting the potential of this synthesis method for advanced optoelectronic applications.https://www.mdpi.com/1420-3049/30/1/35quantum dotsIn<sub>1−x</sub>Ga<sub>x</sub>PIn precursorred-to-blue emissionphotoluminescence quantum yield
spellingShingle Calem Duah
Ji-Seoung Jeong
Ji Yeon Ryu
Bo Keun Park
Young Kuk Lee
Seon Joo Lee
Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
Molecules
quantum dots
In<sub>1−x</sub>Ga<sub>x</sub>P
In precursor
red-to-blue emission
photoluminescence quantum yield
title Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
title_full Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
title_fullStr Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
title_full_unstemmed Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
title_short Tailoring Red-to-Blue Emission in In<sub>1−x</sub>Ga<sub>x</sub>P/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)<sub>2</sub>Cl]<sub>2</sub> Precursor and GaI<sub>3</sub>
title_sort tailoring red to blue emission in in sub 1 x sub ga sub x sub p znse zns quantum dots using a novel in btsa sub 2 sub cl sub 2 sub precursor and gai sub 3 sub
topic quantum dots
In<sub>1−x</sub>Ga<sub>x</sub>P
In precursor
red-to-blue emission
photoluminescence quantum yield
url https://www.mdpi.com/1420-3049/30/1/35
work_keys_str_mv AT calemduah tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub
AT jiseoungjeong tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub
AT jiyeonryu tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub
AT bokeunpark tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub
AT youngkuklee tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub
AT seonjoolee tailoringredtoblueemissionininsub1xsubgasubxsubpznseznsquantumdotsusinganovelinbtsasub2subclsub2subprecursorandgaisub3sub