Construction of a predictive model for cervical lymph node metastasis in papillary thyroid carcinoma

BackgroundIn oncology, the relationships among cervical central lymph node metastasis (CLNM), biochemical tests, and ultrasound characteristics in patients with papillary thyroid cancer (PTC) remain controversial. This association is currently not well supported by evidence, which emphasizes the nee...

Full description

Saved in:
Bibliographic Details
Main Authors: YanHong Hao, Yuan Su, Yanan Li, Qiaohong Pan, Liping Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-05-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2025.1549148/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BackgroundIn oncology, the relationships among cervical central lymph node metastasis (CLNM), biochemical tests, and ultrasound characteristics in patients with papillary thyroid cancer (PTC) remain controversial. This association is currently not well supported by evidence, which emphasizes the need for further research. Understanding the connection between CLNM, biochemical testing, and ultrasound features is crucial for clinical practice and public health efforts. Research on this topic is still underway and is now receiving much interest. Our goal was to create and verify a basic cervical lymph node metastasis prediction model.MethodsIn this retrospective cohort study, 685 individuals diagnosed with PTC from First Hospital of Shanxi Medical University (n = 560) and Changzhi Heping Hospital (n = 125) participated in the research from January 2020 to October 2022. Patients were randomly assigned to a training set (n=392), an internal test set (n=168), or an external test set (n=125). Comprehensive clinical information, serological indices, and ultrasonography features were obtained for every participant. LASSO (Least Absolute Shrinkage and Selection Operator) and BSR (Best Subset Regression) to select features for model construction. A logistic regression model with filtered variables was constructed. A nomogram was developed based on six risk factors. Receiver operating characteristic (ROC) curves, decision curve analysis, and calibration curves were used to assess the predictive accuracy, clinical utility, and discriminative ability of the nomogram.ResultsOf the 560 individuals, 54.3% (304/560) did not have lymph node metastases, whereas 45.7% (256/560) did. Age, male, nodule size, multifocal lesions, capsular contact or invasion and ill-defined margins were determined to be risk variables via BSR and multivariate logistic analysis. Nomograms were created using these six risk indicators. The prediction model of CLNM had an AUC of 0.884 (95% CI 0.851, 0.916). Both the internal and the external validation results were highly encouraging. Confirming the model’s stability and applicability in different data environments.ConclusionWe developed a predictive model and nomogram for CLNM in PTC patients, which demonstrated robust performance. This model can guide surgical planning, potentially reducing complications and improving outcomes.
ISSN:2234-943X