Comprehensive Performance Comparison of Signal Processing Features in Machine Learning Classification of Alcohol Intoxication on Small Gait Datasets

Detecting alcohol intoxication is crucial for preventing accidents and enhancing public safety. Traditional intoxication detection methods rely on direct blood alcohol concentration (BAC) measurement via breathalyzers and wearable sensors. These methods require the user to purchase and carry externa...

Full description

Saved in:
Bibliographic Details
Main Authors: Muxi Qi, Samuel Chibuoyim Uche, Emmanuel Agu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7250
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting alcohol intoxication is crucial for preventing accidents and enhancing public safety. Traditional intoxication detection methods rely on direct blood alcohol concentration (BAC) measurement via breathalyzers and wearable sensors. These methods require the user to purchase and carry external hardware such as breathalyzers, which is expensive and cumbersome. Convenient, unobtrusive intoxication detection methods using equipment already owned by users are desirable. Recent research has explored machine learning-based approaches using smartphone accelerometers to classify intoxicated gait patterns. While neural network approaches have emerged, due to the significant challenges with collecting intoxicated gait data, gait datasets are often too small to utilize such approaches. To avoid overfitting on such small datasets, traditional machine learning (ML) classification is preferred. A comprehensive set of ML features have been proposed. However, until now, no work has systematically evaluated the performance of various categories of gait features for alcohol intoxication detection task using traditional machine learning algorithms. This study evaluates 27 signal processing features handcrafted from accelerometer gait data across five domains: time, frequency, wavelet, statistical, and information-theoretic. The data were collected from 24 subjects who experienced alcohol stimulation using goggle busters. Correlation-based feature selection (CFS) was employed to rank the features most correlated with alcohol-induced gait changes, revealing that 22 features exhibited statistically significant correlations with BAC levels. These statistically significant features were utilized to train supervised classifiers and assess their impact on alcohol intoxication detection accuracy. Statistical features yielded the highest accuracy (83.89%), followed by time-domain (83.22%) and frequency-domain features (82.21%). Classifying all domain 22 significant features using a random forest model improved classification accuracy to 84.9%. These findings suggest that incorporating a broader set of signal processing features enhances the accuracy of smartphone-based alcohol intoxication detection.
ISSN:2076-3417