Advancements in one-dimensional protein structure prediction using machine learning and deep learning

The accurate prediction of protein structures remains a cornerstone challenge in structural bioinformatics, essential for understanding the intricate relationship between protein sequence, structure, and function. Recent advancements in Machine Learning (ML) and Deep Learning (DL) have revolutionize...

Full description

Saved in:
Bibliographic Details
Main Authors: Wafa Alanazi, Di Meng, Gianluca Pollastri
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037025001254
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate prediction of protein structures remains a cornerstone challenge in structural bioinformatics, essential for understanding the intricate relationship between protein sequence, structure, and function. Recent advancements in Machine Learning (ML) and Deep Learning (DL) have revolutionized this field, offering innovative approaches to tackle one- dimensional (1D) protein structure annotations, including secondary structure, solvent accessibility, and intrinsic disorder. This review highlights the evolution of predictive methodologies, from early machine learning models to sophisticated deep learning frameworks that integrate sequence embeddings and pretrained language models. Key advancements, such as AlphaFold’s transformative impact on structure prediction and the rise of protein language models (PLMs), have enabled unprecedented accuracy in capturing sequence-structure relationships. Furthermore, we explore the role of specialized datasets, benchmarking competitions, and multimodal integration in shaping state-of-the-art prediction models. By addressing challenges in data quality, scalability, interpretability, and task-specific optimization, this review underscores the transformative impact of ML, DL, and PLMs on 1D protein prediction while providing insights into emerging trends and future directions in this rapidly evolving field.
ISSN:2001-0370