Multi-objective optimization of power networks integrating electric vehicles and wind energy

In the ever-evolving landscape of power networks, the integration of diverse sources, including electric vehicles (EVs) and renewable energies like wind power, has gained prominence. With the rapid proliferation of plug-in electric vehicles (PEVs), their optimal utilization hinges on reconciling con...

Full description

Saved in:
Bibliographic Details
Main Authors: Peifang Liu, Jiang Guo, Fangqing Zhang, Ye Zou, Junjie Tang
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Intelligent Systems with Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667305324001261
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the ever-evolving landscape of power networks, the integration of diverse sources, including electric vehicles (EVs) and renewable energies like wind power, has gained prominence. With the rapid proliferation of plug-in electric vehicles (PEVs), their optimal utilization hinges on reconciling conflicting and adaptable targets, including facilitating vehicle-to-grid (V2 G) connectivity or harmonizing with the broader energy ecosystem. Simultaneously, the inexorable integration of wind resources into power networks underscores the critical need for multi-purpose planning to optimize production and reduce costs. This study tackles this multifaceted challenge, incorporating the presence of EVs and a probabilistic wind resource model. Addressing the complexity of the issue, we devise a multi-purpose method grounded in collective competition, effectively reducing computational complexity and creatively enhancing the model's performance with a Pareto front optimality point. To discern the ideal response, fuzzy theory is employed. The suggested pattern is rigorously tested on two well-established IEEE power networks (30- and 118-bus) in diverse scenarios featuring windmills and PEV producers, with outcomes showcasing the remarkable excellence of our multi-purpose framework in addressing this intricate issue while accommodating uncertainty.
ISSN:2667-3053