1.79-GHz acquisition rate absolute distance measurement with lithium niobate electro-optic comb
Abstract AI-empowered autonomous vehicles must sense the fast-changing three-dimensional environments with high speed and precision. However, the tradeoff between acquisition rate and non-ambiguity range prevents most LiDARs from achieving high-speed absolute distance measurement. Here we demonstrat...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58018-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract AI-empowered autonomous vehicles must sense the fast-changing three-dimensional environments with high speed and precision. However, the tradeoff between acquisition rate and non-ambiguity range prevents most LiDARs from achieving high-speed absolute distance measurement. Here we demonstrate a lithium niobate electro-optic comb-enabled ultrafast absolute distance measurement method — repetition rate-modulated frequency comb (RRMFC). We achieved an integrated lithium-niobate phase modulator with a half-wave voltage of 1.47 V, leading to over 50 sidebands and a repetition rate can be tuned over 12 GHz in 4 μs. Leveraging these unique features, RRMFC can coherently measure the distance by detecting interference peaks in the time domain, leading to acquisition rates up to 1.79 GHz and a large non-ambiguity range. This single-channel acquisition rate is over 4 orders of magnitude higher than the state-of-the-art absolute distance measurement system. Thus, RRMFC-based LiDAR allows autonomous vehicles to sense the fine details of a fast-changing environment using a single laser. |
|---|---|
| ISSN: | 2041-1723 |