Map Floodwater Radar Imagery using Machine Learning Algorithms

Flooding is a widespread and costly natural disaster around the world. Accurately assessing the extent of flooding in near real-time is crucial for governments and humanitarian organizations. This information strengthens early warning systems, evaluates risks, and guides effective relief efforts. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Thanh-Nghi Doan, Duc-Ngoc Le-Thi
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3157
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549953579614208
author Thanh-Nghi Doan
Duc-Ngoc Le-Thi
author_facet Thanh-Nghi Doan
Duc-Ngoc Le-Thi
author_sort Thanh-Nghi Doan
collection DOAJ
description Flooding is a widespread and costly natural disaster around the world. Accurately assessing the extent of flooding in near real-time is crucial for governments and humanitarian organizations. This information strengthens early warning systems, evaluates risks, and guides effective relief efforts. Therefore, precise flood mapping is essential for saving lives through improved early warning systems and targeted emergency responses. In this study, radar imagery available on the Planetary Computer Data was utilized to train a U-Net model specifically designed to label flood-affected pixels in an image from a flood event. Different blocks of the U-Net encoder architecture were fine-tuned to identify the most efficient fine-tuned model, and their results were compared. As a result, the model with blocks 1 and 2 being fine-tuned demonstrated the highest Intersection over Union (IoU) score of 78.904%, an increase of 8.663% over the baseline methods. ABSTRAK: Banjir merupakan bencana alam yang meluas dan mahal di seluruh dunia. Penilaian yang tepat terhadap skala banjir secara hampir masa nyata adalah penting bagi kerajaan dan organisasi kemanusiaan. Maklumat ini memperkukuhkan sistem amaran awal, menilai risiko, dan membimbing usaha bantuan yang lebih berkesan. Oleh itu, pemetaan banjir yang tepat adalah penting untuk menyelamatkan nyawa melalui sistem amaran awal yang lebih baik dan respons kecemasan yang disasarkan. Dalam kajian ini, imej radar yang tersedia pada Planetary Computer Data digunakan untuk melatih model U-Net yang direka khas untuk melabelkan piksel yang terjejas oleh banjir dalam imej daripada kejadian banjir. Bagi mengenal pasti model ditala-halus yang paling cekap, blok-blok berlainan dalam arkitektur pengekod U-Net telah ditala-halus, dan hasilnya dibandingkan. Hasilnya, model dengan blok 1 dan 2 yang ditala-halus menunjukkan skor Intersection over Union (IoU) tertinggi sebanyak 78.904%, iaitu peningkatan sebanyak 8.663% berbanding kaedah asas.
format Article
id doaj-art-bb3ba42bf74e4c0fb03c63a83530c158
institution Kabale University
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-bb3ba42bf74e4c0fb03c63a83530c1582025-01-10T12:40:47ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.3157Map Floodwater Radar Imagery using Machine Learning AlgorithmsThanh-Nghi Doan0https://orcid.org/0000-0002-9957-0948Duc-Ngoc Le-Thi1An Giang University An Giang University Flooding is a widespread and costly natural disaster around the world. Accurately assessing the extent of flooding in near real-time is crucial for governments and humanitarian organizations. This information strengthens early warning systems, evaluates risks, and guides effective relief efforts. Therefore, precise flood mapping is essential for saving lives through improved early warning systems and targeted emergency responses. In this study, radar imagery available on the Planetary Computer Data was utilized to train a U-Net model specifically designed to label flood-affected pixels in an image from a flood event. Different blocks of the U-Net encoder architecture were fine-tuned to identify the most efficient fine-tuned model, and their results were compared. As a result, the model with blocks 1 and 2 being fine-tuned demonstrated the highest Intersection over Union (IoU) score of 78.904%, an increase of 8.663% over the baseline methods. ABSTRAK: Banjir merupakan bencana alam yang meluas dan mahal di seluruh dunia. Penilaian yang tepat terhadap skala banjir secara hampir masa nyata adalah penting bagi kerajaan dan organisasi kemanusiaan. Maklumat ini memperkukuhkan sistem amaran awal, menilai risiko, dan membimbing usaha bantuan yang lebih berkesan. Oleh itu, pemetaan banjir yang tepat adalah penting untuk menyelamatkan nyawa melalui sistem amaran awal yang lebih baik dan respons kecemasan yang disasarkan. Dalam kajian ini, imej radar yang tersedia pada Planetary Computer Data digunakan untuk melatih model U-Net yang direka khas untuk melabelkan piksel yang terjejas oleh banjir dalam imej daripada kejadian banjir. Bagi mengenal pasti model ditala-halus yang paling cekap, blok-blok berlainan dalam arkitektur pengekod U-Net telah ditala-halus, dan hasilnya dibandingkan. Hasilnya, model dengan blok 1 dan 2 yang ditala-halus menunjukkan skor Intersection over Union (IoU) tertinggi sebanyak 78.904%, iaitu peningkatan sebanyak 8.663% berbanding kaedah asas. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3157Flood mappingFine-tunningRadar imageryU-Net
spellingShingle Thanh-Nghi Doan
Duc-Ngoc Le-Thi
Map Floodwater Radar Imagery using Machine Learning Algorithms
International Islamic University Malaysia Engineering Journal
Flood mapping
Fine-tunning
Radar imagery
U-Net
title Map Floodwater Radar Imagery using Machine Learning Algorithms
title_full Map Floodwater Radar Imagery using Machine Learning Algorithms
title_fullStr Map Floodwater Radar Imagery using Machine Learning Algorithms
title_full_unstemmed Map Floodwater Radar Imagery using Machine Learning Algorithms
title_short Map Floodwater Radar Imagery using Machine Learning Algorithms
title_sort map floodwater radar imagery using machine learning algorithms
topic Flood mapping
Fine-tunning
Radar imagery
U-Net
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3157
work_keys_str_mv AT thanhnghidoan mapfloodwaterradarimageryusingmachinelearningalgorithms
AT ducngoclethi mapfloodwaterradarimageryusingmachinelearningalgorithms