Research on Q-Learning-Based Cooperative Optimization Methodology for Dynamic Task Scheduling and Energy Consumption in Underwater Pan-Tilt Systems

Given the harsh working conditions of underwater pan-tilt systems, their energy consumption management is particularly crucial. This study proposes an underwater pan-tilt operation method with an automatic wake-up mechanism, which activates only upon target detection, replacing conventional timer-ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Shan Tao, Lei Yang, Xiaobo Zhang, Shengya Zhao, Kun Liu, Xinran Tian, Hengxin Xu
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4785
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the harsh working conditions of underwater pan-tilt systems, their energy consumption management is particularly crucial. This study proposes an underwater pan-tilt operation method with an automatic wake-up mechanism, which activates only upon target detection, replacing conventional timer-based triggering. Furthermore, departing from fixed-duration observation strategies, we introduce a Q-learning algorithm to optimize operational modes. The algorithm dynamically adjusts working modes based on surrounding biological activity frequency: employing a low-power mode (reduced energy consumption with lower monitoring intensity) during periods of sparse biological presence and switching to a high-performance mode (extended observation duration, higher energy consumption, and enhanced monitoring intensity) during frequent biological activity. Simulation results demonstrate that compared to fixed-duration observation schemes, the proposed optimization strategy achieves a 11.11% improvement in monitoring effectiveness while achieving 16.21% energy savings.
ISSN:1424-8220