Direct derivation of N $$ \mathcal{N} $$ = 1 supergravity in ten dimensions to all orders in fermions

Abstract It has been known for some time that generalised geometry provides a particularly elegant rewriting of the action and symmetries of 10-dimensional supergravity theories, up to the lowest nontrivial order in fermions. By exhibiting the full symmetry calculations in the second-order formalism...

Full description

Saved in:
Bibliographic Details
Main Authors: Julian Kupka, Charles Strickland-Constable, Fridrich Valach
Format: Article
Language:English
Published: SpringerOpen 2025-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2025)114
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract It has been known for some time that generalised geometry provides a particularly elegant rewriting of the action and symmetries of 10-dimensional supergravity theories, up to the lowest nontrivial order in fermions. By exhibiting the full symmetry calculations in the second-order formalism, we show in the N $$ \mathcal{N} $$ = 1 case that this analysis can be upgraded to all orders in fermions and we obtain a strikingly simple form of the action as well as of the supersymmetry transformations, featuring overall only five higher-fermionic terms. Surprisingly, even after expressing the action in terms of classical (non-generalised geometric) variables one obtains a simplification of the usual formulae. This in particular confirms that generalised geometry provides the natural set of variables for studying (the massless level of) string theory. We also show how this new reformulation implies the compatibility of the Poisson-Lie T-duality with the equations of motion of the full supergravity theory.
ISSN:1029-8479