Holographic energy correlators for soft walls

Abstract We calculate energy correlators in a general holographic model of confinement, involving an asymptotically anti-de Sitter (AdS) warped extra dimension. Building on a recent computation in a minimal hard-wall model of confinement, we show that the shockwave method for efficiently computing e...

Full description

Saved in:
Bibliographic Details
Main Authors: Csaba Csáki, Steven Ferrante, Ameen Ismail
Format: Article
Language:English
Published: SpringerOpen 2025-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2025)117
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We calculate energy correlators in a general holographic model of confinement, involving an asymptotically anti-de Sitter (AdS) warped extra dimension. Building on a recent computation in a minimal hard-wall model of confinement, we show that the shockwave method for efficiently computing energy correlators in AdS generalizes to an arbitrary warped geometry. This is possible because exact, linear shockwave solutions to the 5D field equations exist in any warped background. We apply our formalism to compute the two-point energy correlator for two simple models of confinement with interesting infrared spectra — one with a gapped continuum spectrum and one with linear Regge trajectories. The results differ from the simple hard-wall model and from each other, demonstrating that the details of the confining dynamics affect the shape of the energy correlator observables.
ISSN:1029-8479