ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning
Abstract Despite the significant potential of generative models, low synthesizability of many generated molecules limits their real-world applications. In response to this issue, we develop ClickGen, a deep learning model that utilizes modular reactions like click chemistry to assemble molecules and...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-11-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-54456-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!