Targeting TXNIP for neuroprotection: A novel approach to reducing inflammation and promoting recovery in ischemic stroke

Ischemic stroke often results in high mortality and significant disability. Current research primarily focuses on understanding neuroinflammation and cell death following a stroke to identify novel therapeutic targets. This study investigates the endothelial cell-specific role of Thioredoxin interac...

Full description

Saved in:
Bibliographic Details
Main Authors: Chongxin He, Yong Bao, Yong Xu, Jingjing Cheng, Xinxin Hu
Format: Article
Language:English
Published: Association of Basic Medical Sciences of Federation of Bosnia and Herzegovina 2024-12-01
Series:Biomolecules & Biomedicine
Subjects:
Online Access:https://www.bjbms.org/ojs/index.php/bjbms/article/view/11366
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ischemic stroke often results in high mortality and significant disability. Current research primarily focuses on understanding neuroinflammation and cell death following a stroke to identify novel therapeutic targets. This study investigates the endothelial cell-specific role of Thioredoxin interacting protein (TXNIP) in ischemic stroke and its underlying molecular mechanisms both in vitro and in vivo. By targeting endothelial cells, we aim to determine how TXNIP knockdown promotes neuroprotection, enhances angiogenesis, and reduces inflammation post-stroke. In vitro, an oxygen-glucose deprivation (OGD) model using bEnd.3 cells simulated ischemic conditions. Cellular injury was evaluated through cell proliferation and angiogenesis assays, while dual immunofluorescence staining assessed ZO-1 and CD31 expression. Western blotting measured protein levels of TXNIP, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), ASC, pro-caspase-1, and interleukin-1β (IL-1β). In vivo, a middle cerebral artery occlusion (MCAO) mouse model was employed to mimic ischemic stroke. Brain injury was evaluated using triphenyl tetrazolium chloride (TTC) and Nissl staining, and molecular changes in injury markers were assessed via Western blot analysis. In vitro, TXNIP knockdown promoted cell proliferation and angiogenesis, reduced inflammation, and decreased ZO-1 and CD31 fluorescence intensity. TXNIP knockdown also reversed OGD-induced upregulation of TXNIP, NLRP3, ASC, pro-caspase-1, and IL-1β. In vivo, TXNIP knockdown improved neurological recovery, reflected by lower Longa scores, increased Nissl body presence, and reduced infarct size. These findings suggest that TXNIP knockdown mitigates inflammation, enhances angiogenesis, and reduces cerebral damage following ischemic stroke. This provides valuable insights into potential endothelial cell-specific therapeutic strategies for stroke treatment.
ISSN:2831-0896
2831-090X