Defective Intracortical Inhibition as a Marker of Impaired Neural Compensation in Amputees Undergoing Rehabilitation

<b>Background/Objectives</b>: Lower-limb amputation (LLA) leads to disability, impaired mobility, and reduced quality of life, affecting 1.6 million people in the USA. Post-amputation, motor cortex reorganization occurs, contributing to phantom limb pain (PLP). Transcranial magnetic stim...

Full description

Saved in:
Bibliographic Details
Main Authors: Guilherme J. M. Lacerda, Lucas Camargo, Fernanda M. Q. Silva, Marta Imamura, Linamara R. Battistella, Felipe Fregni
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/13/5/1015
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background/Objectives</b>: Lower-limb amputation (LLA) leads to disability, impaired mobility, and reduced quality of life, affecting 1.6 million people in the USA. Post-amputation, motor cortex reorganization occurs, contributing to phantom limb pain (PLP). Transcranial magnetic stimulation (TMS) assesses changes in cortical excitability, helping to identify compensatory mechanisms. This study investigated the association between TMS metrics and clinical and neurophysiological outcomes in LLA patients. <b>Methods</b>: A cross-sectional analysis of the DEFINE cohort, with 59 participants, was carried out. TMS metrics included resting motor threshold (rMT), motor-evoked potential (MEP) amplitude, short intracortical inhibition (SICI), and intracortical facilitation (ICF). <b>Results</b>: Multivariate analysis revealed increased ICF and rMT in the affected hemisphere of PLP patients, while SICI was reduced with the presence of PLP. A positive correlation between SICI and EEG theta oscillations in the frontal, central, and parietal regions suggested compensatory mechanisms in the unaffected hemisphere. Increased MEP was associated with reduced functional independence. <b>Conclusions</b>: SICI appears to be a key factor linked to the presence of PLP, but not its intensity. Reduced SICI may indicate impaired cortical compensation, contributing to PLP. Other neural mechanisms, including central sensitization and altered thalamocortical connectivity, may influence PLP’s severity. Our findings align with those of prior studies, reinforcing low SICI as a marker of maladaptive neuroplasticity in amputation-related pain. Additionally, longer amputation duration was associated with disrupted SICI, suggesting an impact of long-term plasticity changes.
ISSN:2227-9059