Partially-massless higher spin algebras in four dimensions

Abstract We propose a realisation of partially-massless higher spin algebras in four dimensions in terms of bosonic and fermionic oscillators, using Howe duality between sp(4, ℝ) ≅ so(2, 3) and osp(1|2(ℓ − 1), ℝ). More precisely, we show that the centraliser of osp(1|2(ℓ − 1), ℝ) in the Weyl-Cliffor...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas Basile, Shailesh Dhasmana
Format: Article
Language:English
Published: SpringerOpen 2024-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2024)152
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559909370429440
author Thomas Basile
Shailesh Dhasmana
author_facet Thomas Basile
Shailesh Dhasmana
author_sort Thomas Basile
collection DOAJ
description Abstract We propose a realisation of partially-massless higher spin algebras in four dimensions in terms of bosonic and fermionic oscillators, using Howe duality between sp(4, ℝ) ≅ so(2, 3) and osp(1|2(ℓ − 1), ℝ). More precisely, we show that the centraliser of osp(1|2(ℓ − 1), ℝ) in the Weyl-Clifford algebra generated by 4 bosonic and 8(ℓ − 1) fermionic symbols, modulo osp(1|2(ℓ − 1), ℝ) generators, is isomorphic to the higher spin algebra of the type-A ℓ theory whose spectrum contains partially-massless fields of all spins and depths t = 1, 3,…, 2ℓ − 1. We also discuss the possible existence of a deformation of this algebra, which would encode interaction for the type-A ℓ theory.
format Article
id doaj-art-b6e942c03e28492eac5865fa65d65235
institution Kabale University
issn 1029-8479
language English
publishDate 2024-12-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj-art-b6e942c03e28492eac5865fa65d652352025-01-05T12:05:58ZengSpringerOpenJournal of High Energy Physics1029-84792024-12-0120241213010.1007/JHEP12(2024)152Partially-massless higher spin algebras in four dimensionsThomas Basile0Shailesh Dhasmana1Service de Physique de l’Univers, Champs et Gravitation, Université de MonsService de Physique de l’Univers, Champs et Gravitation, Université de MonsAbstract We propose a realisation of partially-massless higher spin algebras in four dimensions in terms of bosonic and fermionic oscillators, using Howe duality between sp(4, ℝ) ≅ so(2, 3) and osp(1|2(ℓ − 1), ℝ). More precisely, we show that the centraliser of osp(1|2(ℓ − 1), ℝ) in the Weyl-Clifford algebra generated by 4 bosonic and 8(ℓ − 1) fermionic symbols, modulo osp(1|2(ℓ − 1), ℝ) generators, is isomorphic to the higher spin algebra of the type-A ℓ theory whose spectrum contains partially-massless fields of all spins and depths t = 1, 3,…, 2ℓ − 1. We also discuss the possible existence of a deformation of this algebra, which would encode interaction for the type-A ℓ theory.https://doi.org/10.1007/JHEP12(2024)152Higher Spin GravityHigher Spin Symmetry
spellingShingle Thomas Basile
Shailesh Dhasmana
Partially-massless higher spin algebras in four dimensions
Journal of High Energy Physics
Higher Spin Gravity
Higher Spin Symmetry
title Partially-massless higher spin algebras in four dimensions
title_full Partially-massless higher spin algebras in four dimensions
title_fullStr Partially-massless higher spin algebras in four dimensions
title_full_unstemmed Partially-massless higher spin algebras in four dimensions
title_short Partially-massless higher spin algebras in four dimensions
title_sort partially massless higher spin algebras in four dimensions
topic Higher Spin Gravity
Higher Spin Symmetry
url https://doi.org/10.1007/JHEP12(2024)152
work_keys_str_mv AT thomasbasile partiallymasslesshigherspinalgebrasinfourdimensions
AT shaileshdhasmana partiallymasslesshigherspinalgebrasinfourdimensions