Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method

The BeiDou Navigation Satellite System (BDS) offers orbit and clock corrections through the B2b signal, enabling Precise Point Positioning (PPP) without relying on ground communication networks. This capability supports applications such as aerial and maritime mapping. However, achieving high precis...

Full description

Saved in:
Bibliographic Details
Main Authors: Lewen Zhao, Wei Zhai
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/1/25
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The BeiDou Navigation Satellite System (BDS) offers orbit and clock corrections through the B2b signal, enabling Precise Point Positioning (PPP) without relying on ground communication networks. This capability supports applications such as aerial and maritime mapping. However, achieving high precision during the convergence period remains challenging, particularly for missions with short observation durations. To address this, we analyze the performance of PPP over short periods using PPP-B2b products and propose using the backward smoothing method to enhance the accuracy during the convergence period. Evaluation of the accuracy of PPP-B2b products shows that the orbit and clock accuracy of the BDS surpass those of GPS. Specifically, the BDS achieves orbit accuracies of 0.059 m, 0.178 m, and 0.186 m in the radial, along-track, and cross-track components, respectively, with a clock accuracy within 0.13 ns. The hourly static PPP achieves 0.5 m and 0.1 m accuracies with convergence times of 4.5 and 25 min at a 50% proportion, respectively. Nonetheless, 7.07% to 23.79% of sessions fail to converge to 0.1 m due to the limited availability of GPS and BDS corrections at certain stations. Simulated kinematic PPP requires an additional 1–4 min to reach the same accuracy as the static PPP. Using the backward smoothing method significantly enhances accuracy, achieving 0.024 m, 0.046 m, and 0.053 m in the north, east, and up directions, respectively. For vehicle-based positioning, forward PPP can achieve a horizontal accuracy better than 0.5 m within 4 min; however, during the convergence period, positioning errors may exceed 1.5 m and 3.0 m in the east and up direction. By applying the smoothing method, horizontal accuracy can reach better than 0.2 m, while the vertical accuracy can improve to better than 0.3 m.
ISSN:2072-4292