Adaptive Treatment of Metastatic Prostate Cancer Using Generative Artificial Intelligence

Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is com...

Full description

Saved in:
Bibliographic Details
Main Author: Youcef Derbal
Format: Article
Language:English
Published: SAGE Publishing 2025-01-01
Series:Clinical Medicine Insights: Oncology
Online Access:https://doi.org/10.1177/11795549241311408
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC). The case explores the design of GPT-supported adaptive intermittent therapy for mPC. Testosterone and prostate-specific antigen (PSA) are assumed to be repeatedly monitored while treatment may involve a combination of androgen deprivation therapy (ADT), androgen receptor-signalling inhibitors (ARSI), chemotherapy, and radiotherapy. The analysis covers various questions relevant to the configuration, training, and inferencing of GPTs for the case of mPC treatment with a particular attention to risk mitigation regarding the hallucination problem and its implications to clinical integration of GenAI technologies. The case study provides elements of an actionable pathway to the realization of GenAI-assisted adaptive treatment of metastatic prostate cancer. As such, the study is expected to help facilitate the design of clinical trials of GenAI-supported cancer treatments.
ISSN:1179-5549