A Biomimetic Approach to Diode Laser Use in Endodontic Treatment of Immature Teeth: Thermal, Structural, and Biological Analysis
The root walls of immature permanent teeth are often weak, thin, and short, making regenerative endodontic treatment (RET) necessary. The goal of RET is to create a favorable environment for further root development. A biomimetic approach is essential for thorough disinfection, followed by the prese...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Biomimetics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-7673/10/4/216 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The root walls of immature permanent teeth are often weak, thin, and short, making regenerative endodontic treatment (RET) necessary. The goal of RET is to create a favorable environment for further root development. A biomimetic approach is essential for thorough disinfection, followed by the preservation and potential stimulation of stem cells from surrounding tissue to enable root regeneration and continued development. The objective of this study was to assess temperature changes on the external root surface, structural alterations in the internal root walls following irradiation with a 940 nm diode laser, and the biocompatibility of stem cells from the apical papilla (SCAPs). Irradiation was performed with varying output powers (0.5 W, 1 W, 1.5 W, and 2 W) in continuous mode for 5 s over four consecutive cycles. Thermographic measurements during irradiation, the micro-CT analysis of root samples, and mitochondrial activity of SCAPs were evaluated. The heating effect correlated directly with a higher output power and thinner root walls. A 1 W output power was found to be safe for immature teeth, particularly in the apical third of the root, while 1.5 W could be safely used for mature mandibular incisors. Diode laser irradiation at 1 W and 1.5 W significantly stimulated SCAPs’ mitochondrial activity within 24 h post-irradiation, indicating a potential photobiostimulatory effect. However, no significant changes were observed at lower (0.5 W) and higher (2 W) output powers. The area of open tubular space inside the root canal was significantly reduced after irradiation, regardless of the applied power. Additionally, irradiation contributed to the demineralization of the dentin on the inner root walls. Future studies should explore the impact of irrigants used between irradiation cycles, the potential benefits of conical laser tips for more even energy distribution, and a thorough analysis of how disinfection protocols affect both the dentin structure and stem cell viability. |
|---|---|
| ISSN: | 2313-7673 |