Fuzzy-Based Control System for Solar-Powered Bulk Service Queueing Model with Vacation
This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number of ar...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/13/7547 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number of arrivals are processed simultaneously; (B) Medium Single Service, where individual packets are handled at a moderate rate; and (C) Low Vacation, where the server takes minimal breaks to maintain efficiency. The Mamdani Inference System (MIS) is implemented to regulate key parameters, such as service rate, bulk size, and vacation duration, based on input variables including queue length, arrival rate, and server utilization. The Mamdani-based fuzzy control mechanism utilizes rule-based reasoning to ensure adaptive decision-making, effectively balancing system performance under varying conditions. By integrating bulk service with a controlled vacation policy, the model achieves an optimal trade-off between processing efficiency and resource utilization. This study examines the effects of fuzzy-based control on key performance metrics, including queue stability, waiting time, and system utilization. The results indicate that the proposed approach enhances operational efficiency and service continuity compared to traditional queueing models. |
|---|---|
| ISSN: | 2076-3417 |