Fuzzy-Based Control System for Solar-Powered Bulk Service Queueing Model with Vacation

This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number of ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Radhakrishnan Keerthika, Subramani Palani Niranjan, Sorin Vlase
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7547
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number of arrivals are processed simultaneously; (B) Medium Single Service, where individual packets are handled at a moderate rate; and (C) Low Vacation, where the server takes minimal breaks to maintain efficiency. The Mamdani Inference System (MIS) is implemented to regulate key parameters, such as service rate, bulk size, and vacation duration, based on input variables including queue length, arrival rate, and server utilization. The Mamdani-based fuzzy control mechanism utilizes rule-based reasoning to ensure adaptive decision-making, effectively balancing system performance under varying conditions. By integrating bulk service with a controlled vacation policy, the model achieves an optimal trade-off between processing efficiency and resource utilization. This study examines the effects of fuzzy-based control on key performance metrics, including queue stability, waiting time, and system utilization. The results indicate that the proposed approach enhances operational efficiency and service continuity compared to traditional queueing models.
ISSN:2076-3417