Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices

Abstract Artificial Neural Networks (ANN) require a better platform to reduce their energy consumption and achieve their full potential. Electrochemical devices like the Electrochemical Neuromorphic Organic Device (ENODe) stand out as a potential building block for ANNs, due to their lower energy de...

Full description

Saved in:
Bibliographic Details
Main Authors: Henrique Frulani de Paula Barbosa, Andreas Schander, Andika Asyuda, Luka Bislich, Sarah Bornemann, Björn Lüssem
Format: Article
Language:English
Published: Wiley-VCH 2024-12-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202400481
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553175832690688
author Henrique Frulani de Paula Barbosa
Andreas Schander
Andika Asyuda
Luka Bislich
Sarah Bornemann
Björn Lüssem
author_facet Henrique Frulani de Paula Barbosa
Andreas Schander
Andika Asyuda
Luka Bislich
Sarah Bornemann
Björn Lüssem
author_sort Henrique Frulani de Paula Barbosa
collection DOAJ
description Abstract Artificial Neural Networks (ANN) require a better platform to reduce their energy consumption and achieve their full potential. Electrochemical devices like the Electrochemical Neuromorphic Organic Device (ENODe) stand out as a potential building block for ANNs, due to their lower energy demand, in addition to their biocompatibility and access to multiple and stable memory levels. However, the non‐volatile effect observed in these devices is not yet fully understood. Hence, here we propose a 2D drift‐diffusion model that is capable to reproduce the device behavior. The model relies on the assumption of trapping sites for cations, which are increasingly filled or emptied during subsequent pre‐synaptic pulses. The model is verified by experiments on devices with varying post‐synaptic dimensions. Overall, the results provide a framework to discuss ENODe operation and design strategies for ENODes with well‐controlled memory states.
format Article
id doaj-art-b5caea4b3bdc4db6989a4775b004a2b3
institution Kabale University
issn 2199-160X
language English
publishDate 2024-12-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-b5caea4b3bdc4db6989a4775b004a2b32025-01-09T11:51:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2024-12-011012n/an/a10.1002/aelm.202400481Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic DevicesHenrique Frulani de Paula Barbosa0Andreas Schander1Andika Asyuda2Luka Bislich3Sarah Bornemann4Björn Lüssem5Institut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyInstitut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyInstitut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyInstitut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyInstitut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyInstitut für Mikrosensoren ‐Aktoren, und ‐Systeme (IMSAS) Universität Bremen Otto‐Hahn‐Allee 1 28359 Bremen GermanyAbstract Artificial Neural Networks (ANN) require a better platform to reduce their energy consumption and achieve their full potential. Electrochemical devices like the Electrochemical Neuromorphic Organic Device (ENODe) stand out as a potential building block for ANNs, due to their lower energy demand, in addition to their biocompatibility and access to multiple and stable memory levels. However, the non‐volatile effect observed in these devices is not yet fully understood. Hence, here we propose a 2D drift‐diffusion model that is capable to reproduce the device behavior. The model relies on the assumption of trapping sites for cations, which are increasingly filled or emptied during subsequent pre‐synaptic pulses. The model is verified by experiments on devices with varying post‐synaptic dimensions. Overall, the results provide a framework to discuss ENODe operation and design strategies for ENODes with well‐controlled memory states.https://doi.org/10.1002/aelm.202400481ENODememoryneuromorphicsnon‐volatileOECT
spellingShingle Henrique Frulani de Paula Barbosa
Andreas Schander
Andika Asyuda
Luka Bislich
Sarah Bornemann
Björn Lüssem
Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
Advanced Electronic Materials
ENODe
memory
neuromorphics
non‐volatile
OECT
title Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
title_full Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
title_fullStr Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
title_full_unstemmed Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
title_short Role of Trapping in Non‐Volatility of Electrochemical Neuromorphic Organic Devices
title_sort role of trapping in non volatility of electrochemical neuromorphic organic devices
topic ENODe
memory
neuromorphics
non‐volatile
OECT
url https://doi.org/10.1002/aelm.202400481
work_keys_str_mv AT henriquefrulanidepaulabarbosa roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices
AT andreasschander roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices
AT andikaasyuda roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices
AT lukabislich roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices
AT sarahbornemann roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices
AT bjornlussem roleoftrappinginnonvolatilityofelectrochemicalneuromorphicorganicdevices