Experimental Assessment of Magnetic Nanofluid Injection in High-Salinity and Heavy-Crude-Saturated Sandstone: Mitigation of Formation Damage
The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/1/212 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently demonstrated that these nanoparticles have significant potential for formation damage, a critical limitation that substantially constrains their potential field implementation. This research addresses a critical challenge in EOR: developing magnetic graphene oxide nanoparticles (MGONs) that can traverse rock formations without causing formation damage. MGONs were synthesized and stabilized in formation brine with a high total dissolved solids (TDS) content with a xanthan gum polymer. Two coreflooding experiments were conducted on sandstone cores. The first experiment on high-permeability sandstone (843 mD) showed no formation damage; instead, permeability increased to 935 mD after MGON injection. Irreducible water saturation (S<sub>wirr</sub>) and residual oil saturation (S<sub>or</sub>) were 25.1% and 31.5%, respectively. The second experiment on lower-permeability rock (231.3 mD) evaluated nanoparticle retention. The results showed that 0.09511 mg of MGONs was adsorbed per gram of rock under dynamic conditions. Iron concentration in effluents stabilized after 3 pore volumes, indicating steady-state adsorption. The successful synthesis, stability in high-TDS brine, favorable interfacial properties, and positive effects observed in coreflooding experiments collectively highlight MGONs’ potential as a viable solution for enhancing oil recovery in challenging reservoirs, without causing formation damage. |
---|---|
ISSN: | 1996-1073 |