Drosophila miR-263b-5p controls wing developmental growth by targeting Akt
Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in Drosophila wing development remains unclear. In this...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-12-01
|
| Series: | Animal Cells and Systems |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/19768354.2024.2444366 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in Drosophila wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression. The miR-263b-mediated alteration in wing size was linked to a reduction in wing cell number. Additionally, miR-263b overexpression in Drosophila S2 cells decreased cell proliferation and increased cell death. Consequently, we identified Akt as a direct target of miR-263b-5p and found that miR-263b-mediated wing growth regulation was due to changes in Akt expression. Co-expression of Akt in miR-263b-overexpressing wings rescued the miR-263b overexpression-mediated reduction in wing growth. These results enhance our understanding of the crucial role of miRNAs in growth regulation during Drosophila wing development. |
|---|---|
| ISSN: | 1976-8354 2151-2485 |