The cAMP-PKA signaling initiates mitosis by phosphorylating Bora
Abstract Timely entry into mitosis requires activation of Polo-like kinase 1 (Plk1) by Aurora kinase A (Aurora A), but the upstream signaling trigger remains unclear. Here, we show that cyclic AMP (cAMP) signaling serves as a critical initiator of mitosis in mammalian cells. Specifically, the cAMP-d...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-63352-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Timely entry into mitosis requires activation of Polo-like kinase 1 (Plk1) by Aurora kinase A (Aurora A), but the upstream signaling trigger remains unclear. Here, we show that cyclic AMP (cAMP) signaling serves as a critical initiator of mitosis in mammalian cells. Specifically, the cAMP-dependent protein kinase (PKA) phosphorylates Bora, enabling it to bind Aurora A and recruit it to the Bora-Plk1 complex during G2 phase, thereby facilitating Aurora A-dependent activation of Plk1. Disruption of PKA-mediated Bora phosphorylation or the Bora-Aurora A interaction impairs Plk1 activation and delays the G2-to-mitosis (G2/M) transition. Conversely, a phospho-mimetic Bora mutant bypasses the requirement for PKA in promoting Bora-Aurora A interaction, Plk1 activation, and mitotic entry. Furthermore, PKA-mediated Bora phosphorylation and the resulting Bora-Aurora A interaction are essential for mitotic entry during DNA damage checkpoint recovery. Together, these findings identify the cAMP-PKA-Bora-Aurora A-Plk1 signaling cascade as a previously unrecognized and critical trigger for mitotic commitment. |
|---|---|
| ISSN: | 2041-1723 |