Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains

We study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of ℝ𝑛, 𝑛≥3. We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.

Saved in:
Bibliographic Details
Main Authors: Serena Boccia, Sara Monsurrò, Maria Transirico
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2008/582435
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841524886593339392
author Serena Boccia
Sara Monsurrò
Maria Transirico
author_facet Serena Boccia
Sara Monsurrò
Maria Transirico
author_sort Serena Boccia
collection DOAJ
description We study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of ℝ𝑛, 𝑛≥3. We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.
format Article
id doaj-art-b2da4c7c8f0c42089b2193c2b3887dac
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2008-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b2da4c7c8f0c42089b2193c2b3887dac2025-02-03T05:47:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252008-01-01200810.1155/2008/582435582435Elliptic Equations in Weighted Sobolev Spaces on Unbounded DomainsSerena Boccia0Sara Monsurrò1Maria Transirico2Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano, ItalyDipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano, ItalyDipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano, ItalyWe study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of ℝ𝑛, 𝑛≥3. We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.http://dx.doi.org/10.1155/2008/582435
spellingShingle Serena Boccia
Sara Monsurrò
Maria Transirico
Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
International Journal of Mathematics and Mathematical Sciences
title Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
title_full Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
title_fullStr Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
title_full_unstemmed Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
title_short Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
title_sort elliptic equations in weighted sobolev spaces on unbounded domains
url http://dx.doi.org/10.1155/2008/582435
work_keys_str_mv AT serenaboccia ellipticequationsinweightedsobolevspacesonunboundeddomains
AT saramonsurro ellipticequationsinweightedsobolevspacesonunboundeddomains
AT mariatransirico ellipticequationsinweightedsobolevspacesonunboundeddomains