Bounds on Subspace Codes Based on Subspaces of Type (m,1) in Singular Linear Space
The Sphere-packing bound, Singleton bound, Wang-Xing-Safavi-Naini bound, Johnson bound, and Gilbert-Varshamov bound on the subspace codes n+l,M,d,(m,1)q based on subspaces of type (m,1) in singular linear space Fq(n+l) over finite fields Fq are presented. Then, we prove that codes based on subspaces...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/497958 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Sphere-packing bound, Singleton bound, Wang-Xing-Safavi-Naini bound, Johnson bound, and Gilbert-Varshamov bound on the subspace codes n+l,M,d,(m,1)q based on subspaces of type (m,1) in singular linear space Fq(n+l) over finite fields Fq are presented. Then, we prove that codes based on subspaces of type (m,1) in singular linear space attain the Wang-Xing-Safavi-Naini bound if and only if they are certain Steiner structures in Fq(n+l). |
|---|---|
| ISSN: | 1110-757X 1687-0042 |