The Importance of Velocity Acceleration to Flow-Mediated Dilation

The validity of the flow-mediated dilation test has been questioned due to the lack of normalization to the primary stimulus, shear stress. Shear stress can be calculated using Poiseuille's law. However, little attention has been given to the most appropriate blood velocity parameter(s) for cal...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee Stoner, Joanna M. Young, Simon Fryer, Manning J. Sabatier
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Vascular Medicine
Online Access:http://dx.doi.org/10.1155/2012/589213
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The validity of the flow-mediated dilation test has been questioned due to the lack of normalization to the primary stimulus, shear stress. Shear stress can be calculated using Poiseuille's law. However, little attention has been given to the most appropriate blood velocity parameter(s) for calculating shear stress. The pulsatile nature of blood flow exposes the endothelial cells to two distinct shear stimuli during the cardiac cycle: a large rate of change in shear at the onset of flow (velocity acceleration), followed by a steady component. The parameter typically entered into the Poiseuille's law equation to determine shear stress is time-averaged blood velocity, with no regard for flow pulsatility. This paper will discuss (1) the limitations of using Posieuille's law to estimate shear stress and (2) the importance of the velocity profile—with emphasis on velocity acceleration—to endothelial function and vascular tone.
ISSN:2090-2824
2090-2832