Sonar-Based Simultaneous Localization and Mapping Using the Semi-Direct Method

The SLAM problem is a common challenge faced by ROVs working underwater, with the key issue being the accurate estimation of pose. In this work, we make full use of the positional information of point clouds and the surrounding pixel data. To obtain better feature extraction results in specific dire...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu Han, Jinghao Sun, Shu Zhang, Junyu Dong, Hui Yu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/12/2234
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SLAM problem is a common challenge faced by ROVs working underwater, with the key issue being the accurate estimation of pose. In this work, we make full use of the positional information of point clouds and the surrounding pixel data. To obtain better feature extraction results in specific directions, we propose a method that accelerates the computation of the two-dimensional SO-CFAR algorithm, with the time cost being only a very slight increase compared to the one-dimensional SO-CFAR. We develop a sonar semi-direct method, adapted from the direct method used in visual SLAM. With the initialization from the ICP algorithm, we apply this method to further refine the pose estimation. To overcome the deficiencies of sonar images, we preprocess the images and reformulate the sonar imaging model in imitation of camera imaging models, further optimizing the pose by minimizing photometric error and fully leveraging pixel information. The improved front end and the accelerated two-dimensional SO-CFAR are assessed through quantitative experiments. The performance of SLAM in large real-world environments is assessed through qualitative experiments.
ISSN:2077-1312